冲击载荷下浮放包装件摇摆特性和倾覆风险研究

朱大鹏1,曹兴潇2,祁振民3

振动与冲击 ›› 2024, Vol. 43 ›› Issue (10) : 30-36.

PDF(1057 KB)
PDF(1057 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (10) : 30-36.
论文

冲击载荷下浮放包装件摇摆特性和倾覆风险研究

  • 朱大鹏1,曹兴潇2,祁振民3
作者信息 +

Rocking properties and overturning risk of a freestanding package excited by longitudinal shock

  • ZHU Dapeng1,CAO Xingxiao2,QI Zhenmin3
Author information +
文章历史 +

摘要

浮放包装件运输过程中,在冲击载荷下可能产生倾覆,严重威胁着运输安全,分析浮放包装件在纵向冲击载荷下的倾覆风险对于确保运输安全十分重要。本文采用基于指数函数的分段函数模拟车辆制动产生的单峰值钟形冲击加速度,构建浮放包装件在纵向冲击载荷下摇摆运动方程式。对于宽高比角度α较小的包装件,线性化运动方程式,分别在β≠pT和β=pT两种情况下推导包装件摇摆运动方程式和倾覆边界条件,分析结果表明,在自由响应阶段,包装件更容易倾覆。对于宽高比角度α较大的包装件,基于对包装件摇摆运动方程式的能量分析,构建包装件非线性摇摆倾覆边界条件,模拟结果表明,该近似分析法具有良好的准确性。

Abstract

In cargo transportation, the large-scale freestanding package may overturn under longitudinal shock condition, this may lead to catastrophic consequences. Therefore, the analysis of overturning risks of freestanding package under longitudinal shock condition is critical to the package transportation safety. In this paper, the 3-parameter piece-wise function based on exponential expression is used to simulate single-lobe bell-shape shock acceleration produced by vehicle braking, the package is modeled by rigid rectangle block, the rocking motion equation of package is formulated. For small width-height ratio package, the rocking motion equation is linearized, the rocking response equation and overturning boundary condition are obtained analytically under β≠pT and β=pT conditions respectively, the analytical results indicate the freestanding package is more prone to overturn in free response phase. For non-slender package, the package rocking motion equation is rewritten in energy representation form, the approximation method for overturning boundary condition estimation is formulated. The numerical simulation results indicate the accuracy of this estimation method is acceptable.

关键词

运输包装 / 浮放包装件 / 摇摆 / 倾覆 / 边界条件

Key words

transport packaging / freestanding package / rocking / overturn / boundary condition

引用本文

导出引用
朱大鹏1,曹兴潇2,祁振民3. 冲击载荷下浮放包装件摇摆特性和倾覆风险研究[J]. 振动与冲击, 2024, 43(10): 30-36
ZHU Dapeng1,CAO Xingxiao2,QI Zhenmin3. Rocking properties and overturning risk of a freestanding package excited by longitudinal shock[J]. Journal of Vibration and Shock, 2024, 43(10): 30-36

参考文献

[1] 于水源, 曾台英, 丁逸秋. 基于运输环境的包装系统疲劳损伤分析[J]. 包装工程, 2020, 41(13): 118-123. YU Shui-yuan, ZENG Tai-ying. Fatigue Damage of Packaging System Based on the Transportation Environment[J]. Packaging Engineering, 2020, 41(13): 118-123. [2] 朱大鹏. 非线性包装件加速度响应首次穿越问题分析[J]. 振动与冲击, 2018, 37(24): 166-171. ZHU Da-peng. Acceleration response first passage failure probability analysis for a nonlinear package[J]. Journal of vibration and shock, 2018, 37(24): 166-171. [3] Dimitrakopoulos E G, Fung E D W. Closed-form rocking overturning conditions for a family of pulse ground motions[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2016, 472(2196): 20160662. [4] Voyagaki E, Psycharis I N, Mylonakis G. Rocking response and overturning criteria for free standing rigid blocks to single-lobe pulses[J]. Soil Dynamics and Earthquake Engineering, 2013, 46: 85-95. [5] Nabeshima K, Taniguchi R, Kojima K, et al. Closed-form overturning limit of rigid block under critical near-fault ground motions[J]. Frontiers in built environment, 2016, 2: 1-11. [6] Ther T, Kollár L P. Overturning of rigid blocks for earthquake excitation[J]. Bulletin of Earthquake Engineering, 2018, 16(3): 1607-1631. [7] Makris N. A half-century of rocking isolation[J]. Earthquakes and Structures, 2014,7(6):1187-1221. [8] Lachanas C G, Vamvatsikos D. Rocking incremental dynamic analysis[J]. Earthquake engineering & structural dynamics, 2022, 51(3): 688-703. [9] Kazantzi A K, Lachanas C G, Vamvatsikos D. Seismic response distribution expressions for rocking building contents under ordinary ground motions[J]. Bulletin of Earthquake Engineering, 2022, 20(12): 6659-6682. [10] Lachanas C G, Vamvatsikos D, Dimitrakopoulos E G. Statistical property parameterization of simple rocking block response[J]. Earthquake Engineering & Structural Dynamics, 2023, 52(2): 394-414. [11] Sieber M, Vassiliou M F, Anastasopoulos I. Intensity measures, fragility analysis and dimensionality reduction of rocking under far‐field ground motions[J]. Earthquake Engineering & Structural Dynamics, 2022, 51(15): 3639-3657. [12] Brzeski P, Kapitaniak T, Perlikowski P. The use of tuned mass absorber to prevent overturning of the rigid block during earthquake[J]. International Journal of Structural Stability and Dynamics, 2016, 16(10): 1550075. [13] Chatzis M N, Smyth A W. Modeling of the 3D rocking problem[J]. International Journal of Non-Linear Mechanics, 2012, 47(4): 85-98. [14] Vassiliou M F, Burger S, Egger M, et al. The three‐dimensional behavior of inverted pendulum cylindrical structures during earthquakes[J]. Earthquake Engineering & Structural Dynamics, 2017, 46(14): 2261-2280. [15] Hogan S J. On the dynamics of rigid-block motion under harmonic forcing[J]. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 1989, 425(1869): 441-476. [16] Liu Y, Páez Chávez J, Brzeski P, et al. Dynamical response of a rocking rigid block[J]. Chaos: An Interdisciplinary Journal of Nonlinear Science, 2021, 31(7): 073136. [17] 杨维国,胡卫中,齐涛 等.地震作用下浮放物体运动状态研究[J].振动与冲击, 2021, 040(023):247-253. [18] 刘佩,杨维国,葛家琪 等. 足尺三层单跨框架结构-展柜-文物系统振动台试验研究. 建筑结构学报, 2023, 44(8): 24-35 [19] 刘佩,袁晨瑜,杨维国 等. 博物馆-展柜-浮放文物系统地震滑移与摇摆响应分析. 防灾减灾工程学报, 2022, 42(6): 1203-1212. [20] 李宁,王志强,李忠献.脉冲型地震作用下自由摇摆墩的反应特性研究[J].振动工程学报, 2022, 35(6):1521-1529. [21] 马华军.铁路桩基础桥墩墩底摇摆隔震机理及抗震设计方法研究[D].兰州:兰州交通大学, 2019. [22] Shenton III H W. Criteria for initiation of slide, rock, and slide-rock rigid-body modes[J]. Journal of Engineering Mechanics, 1996, 122(7): 690-693. [23] Pompei A, Scalia A, Sumbatyan M A. Dynamics of rigid block due to horizontal ground motion[J]. Journal of Engineering Mechanics, 1998, 124(7): 713-717. [24] Voyagaki E, Psycharis I N, Mylonakis G. Rocking response and overturning criteria for free standing rigid blocks to single—lobe pulses[J]. Soil Dynamics and Earthquake Engineering, 2013, 46: 85-95. [25] Zhang J, Makris N. Rocking response of free-standing blocks under cycloidal pulses[J]. Journal of engineering mechanics, 2001, 127(5): 473-483. [26] Ezzodin A, Amiri G G, Dehkordi M R. Simulation of fling step pulse of near-fault ground motion by using wavelet smoothening and improved bell-shaped function[J]. Soil Dynamics and Earthquake Engineering, 2021, 140: 106462. [27] Ezzodin A, Ghodrati Amiri G, Raissi Dehkordi M. A random vibration-based simulation model for nonlinear seismic assessment of steel structures subjected to fling-step ground motion records[J]. Journal of Vibration Engineering & Technologies, 2022: 1-15. [28] Housner G W, Jennings P C. Generation of artificial earthquakes[J]. Journal of the Engineering Mechanics Division, 1964, 90(1): 113-150. [29] Shinozuka M, Sato Y. Simulation of nonstationary random process[J]. Journal of the Engineering Mechanics Division, 1967, 93(1): 11-40. [30] Rezaeian S, Der Kiureghian A. Simulation of synthetic ground motions for specified earthquake and site characteristics[J]. Earthquake Engineering & Structural Dynamics, 2010, 39(10): 1155-1180. [31] Makris N, Roussos Y S. Rocking response of rigid blocks under near-source ground motions[J]. Geotechnique, 2000, 50(3): 243-262. [32] Makris N, Zhang J. Rocking response of anchored blocks under pulse-type motions[J]. Journal of engineering mechanics, 2001, 127(5): 484-493. [33] Voyagaki E, Psycharis I N, Mylonakis G. Complex response of a rocking block to a full-cycle pulse[J]. Journal of Engineering Mechanics, 2014, 140(6): 04014024.

PDF(1057 KB)

316

Accesses

0

Citation

Detail

段落导航
相关文章

/