航空发动机鸟撞适航符合性数值模拟研究

李俊杰1,柴象海2,金先龙1,杨培中1

振动与冲击 ›› 2024, Vol. 43 ›› Issue (10) : 311-318.

PDF(2525 KB)
PDF(2525 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (10) : 311-318.
论文

航空发动机鸟撞适航符合性数值模拟研究

  • 李俊杰1,柴象海2,金先龙1,杨培中1
作者信息 +

Numerical simulation on the airworthiness compliance of aircraft engines during bird strikes

  • LI Junjie1, CHAI Xianghai2, JIN Xianlong1, YANG Peizhong1
Author information +
文章历史 +

摘要

航空发动机鸟撞适航认证通常基于整机试验,整机鸟撞数值仿真,受发动机结构复杂性影响,存在计算效率、吸鸟关键参数不易确定等问题,而不被工程采纳。而为验证航空发动机吸鸟符合性,进行整机鸟撞数值分析是一种经济高效的方式。基于航空发动机整机鸟撞数值仿真需求,开展航空发动机模型简化建模和关键吸鸟参数提取方法研究。首先,基于SPH方法,考虑工作条件下发动机鸟撞损伤和传力路径上关键部件关系和相互作用,建立了基于航空发动机整机关键零部件等效建模的鸟撞有限元模型。其次,对航空发动机鸟撞适航符合性要求进行分解,确定了造成叶片结构损伤的关键吸鸟参数。最后,基于最严苛情况的整机鸟撞有限元模型,研究了大鸟、中鸟鸟群和大型群鸟导致的转动不平衡、不平衡载荷传递和叶片损伤。数值模拟结果表明大鸟的撞击对航空发动机结构安全的威胁最大,鸟群撞击导致的叶片损伤范围更广。基于整机的鸟撞数值模拟对于航空发动机的结构安全性设计和适航认证是非常具有价值的。

Abstract

Airworthiness certification of aircraft turbine engines with respect to bird ingestion is reliant on physical tests of a full scale engine. Due to the complexity of the engine structure, there are problems, such as computational efficiency and difficulty in determining critical ingestion parameters, in numerical simulation of the whole engine during bird strikes. which is not adopted by engineering wor…ks. In compliance with bird ingestion requirements, numerical analysis of an aeroengine subjected to bird strikes is an economical and efficient method. Based on the numerical simulation requirements of aircraft engine due to bird strikes, simplified modeling of aircraft engine and critical ingestion parameters were investigated. Firstly, considering relationships and interactions among engine components under operating conditions, the finite element model of a full-scale aeroengine was developed using the SPH method. Secondly, based on simulations of fan blades during a bird-strike event, critical ingestion parameters of a large single bird and medium flocking birds were determined. Finally, with regard to the full-scale FE model of a turbine engine subjected to bird strikes under the most critical condition, impact force, rotating unbalance, unbalancing load and blade damage induced by large single bird, medium flocking birds, medium single bird and large flocking bird, respectively, were captured. The numerical results show that the bird-strike damage generated by the large single bird poses the greatest threat to the safety of engine components, while blade damage induced by flocking birds covered a wider area. It is invaluable for engine manufacturers to incorporate a predictive modeling methodology of a turbine engine under bird strikes into structural safety design and bird ingestion certification.

关键词

航空发动机 / 适航符合性 / 鸟撞 / 中鸟鸟群 / 风扇叶片

Key words

aircraft engines / airworthiness compliance / bird strikes / medium flocking birds / fan blades

引用本文

导出引用
李俊杰1,柴象海2,金先龙1,杨培中1. 航空发动机鸟撞适航符合性数值模拟研究[J]. 振动与冲击, 2024, 43(10): 311-318
LI Junjie1, CHAI Xianghai2, JIN Xianlong1, YANG Peizhong1. Numerical simulation on the airworthiness compliance of aircraft engines during bird strikes[J]. Journal of Vibration and Shock, 2024, 43(10): 311-318

参考文献

[1] Heimbs S. Computational methods for bird strike simulations: A review[J]. Computers and Structures, 2011, 89(23-24): 2093-2112. [2] 2016年度中国民航鸟击航空器事件分析报告[R]. 中国民用航空总局安全技术中心,2018. Bird strikes to civil aircraft in China (2016) [R]. Center of Aviation Safety Technology, 2017. [3] Barber J P, Fry P F, Klyce J M, et al. Impact of soft bodies on jet engine fan blades[R]. AFML-TR-77-29, Air Force Material Laboratory, 1977. [4] Storace A F, Nimmer R P, Ravenhall R. Analytical and experimental investigation of bird impact on fan and compressor blading[J]. Journal of Aircraft, 1984, 21(7): 520-527. [5] Martin N F. Nonlinear finite-element analysis to predict fan-blade damage due to soft-body impact[J]. Journal of Propulsion and Power, 1990, 6(4): 445-450. [6] Teichman H C, Tadros R N. Analytical and experimental simulation of fan blade behavior and damage under bird impact[J]. Journal of Engineering for Gas Turbines and Power, 1991, 113(4): 582-594. [7] Martindale I. Bird ingestion and the Rolls-Royce wide chord fan[R]. BSCE22-WP80, Vienna: Bird strike Committee Europe, 1994. [8] Meguid S A, Mao R H, Ng T Y. FE analysis of geometry effects of an artificial bird striking an aeroengine fan blade[J]. International Journal of Impact Engineering, 2008, 35(6): 487-498. [9] Sinha S K, Turner K E, Jain N. Dynamic loading on turbofan blades due to bird-strike[J]. Journal of Engineering for Gas Turbines and Power, 2011, 133(12): 122504. [10] Vignjevic R, Ortowski M, Vuyst T D, et al. A parametric study of bird strike on engine blades[J]. International Journal of Impact Engineering, 2013, 60(oct.): 44-57. [11] 柴象海, 侯亮, 王志强,等. 航空发动机宽弦风扇叶片鸟撞损伤模型标定[J]. 航空动力学报, 2016, 31(5):1032-1038. CHAI Xiang-hai, Hou Liang, Wang Zhi-qiang, et al. Bird strike model calibration for an aero engine wide-chord fan blade[J]. Journal of Aerospace Power, 2016, 31(5): 1032-1038. [12] 郭鹏,刘志远,张桂昌,等.鸟撞过程中撞击位置与撞击姿态对风扇叶片损伤影响研究[J].振动与冲击, 2021, 40(12):124-131. GUO Peng, LIU Zhiyuan, Zhang Guichang, et al. Study on effect of bird impact position and attitude on fan blade damage. Journal of Vibration and Shock, 2021, 40(12):124-131. [13] 中国民用航空规章:第33部 航空发动机适航规定,CCAR-33-R2 [S]. 中国民用航空总局, 2011. China civil aviation regulations: Part 33 airworthiness standards of aircraft engines, CCAR-33-R2 [S]. CAAC, 2011. [14] 邹伟雄, 曹源. 发动机中鸟鸟群吸入验证要求与方法[J]. 测试技术学术, 2015, 34: 505-508. ZOU Wei-xiong, Cao Yuan. Requirements and methods for the medium birds ingestion test[J]. Measurement & Control Technology, 2015, 34: 505-508. [15] Mackinnon B. Sharing the skies. An aviation industry guide to the management of wildlife hazards[M]. TP 13549, Transport Canada, 2004. [16] Wilbeck J S. Impact behavior of low strength projectiles[R]. AFML-TR-77-134, Air Force Material Laboratory, 1978. [17] Axel Rossmann. Aeroengine Safety[M/OL]. https://aeroenginesafety.tugraz.at, [2023-9-14] [18] Allaeys F, Luyckx G, Van Paepegem W, et al. Numerical and experimental investigation of the shock and steady state pressures in the bird material during bird strike[J]. International Journal of Impact Engineering, 2017, 107: 12-22. [19] Shepherd C J, Appleby-Thomas G J, Hazell P J, et al. The dynamic behaviour of ballistic gelatin[C]//Shock Compression of Condensed Matter-2009. AIP conference proceedings 1195, 2009: 1399-1402. [20] Leseur D. Experimental investigations of material models for Ti-6A1-4V and 2024-T3[R]. UCRL-ID-134691, Lawrence Livermore National Laboratory, 1999.

PDF(2525 KB)

Accesses

Citation

Detail

段落导航
相关文章

/