单自由度含干摩擦和弹性约束碰振系统周期运动的转迁及共存特征

李得洋1,李孟2,吴少培2,李国芳2,丁旺才2,丁杰2

振动与冲击 ›› 2024, Vol. 43 ›› Issue (10) : 52-63.

PDF(5334 KB)
PDF(5334 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (10) : 52-63.
论文

单自由度含干摩擦和弹性约束碰振系统周期运动的转迁及共存特征

  • 李得洋1,李孟2,吴少培2,李国芳2,丁旺才2,丁杰2
作者信息 +

Transition and coexistence characteristics of periodic motions of a single-degree-of-freedom vibro-impact system with dry friction

  • LI Deyang1,LI Meng2,WU Shaopei2,LI Guofang2,DING Wangcai2,DING Jie2
Author information +
文章历史 +

摘要

在参数平面和状态平面内,研究了一类单自由度含干摩擦和弹性约束碰撞振动系统周期运动的分布、转迁及共存特征。首先,给出了系统各运动状态(滑动、黏着及碰撞)的衔接条件,并利用响应微扰计算方法得到系统的Floquet矩阵。其次,由相轨线与黏着面的关系将系统在参数平面内的运动划分为六种类型,根据Floquet乘子和滑移分岔发生的几何条件判定相邻周期运动在转迁时的稳定性和分岔类型,并基于胞映射和打靶法分析稳定及不稳定周期运动共存及转迁特征。研究发现,在相邻的多态共存区边界线交点处,系统在不同初始状态下存在分岔共存现象。由于间隙和干摩擦广泛存在于实际机械系统中,研究此类系统的动力学特性,对后续系统参数的设计及各种动力学行为的控制具有重要的意义。

Abstract

The distribution, transition and coexistence characteristics of periodic motion in parameter and state plane of a single degree of freedom vibro-impact system with elastic constraints and dry friction are analyzed. Firstly, the connection conditions of each motion state (slip, stick and impact) of the system are given. A method of computing Floquet Matrix by disturbing response is presented. Secondly, the motion of the system is divided into six types according to the relationship between the phase trajectory and the stick surface. By the Floquet multiplier and the geometric conditions of sliping bifurcation, the stability and bifurcation types of adjacent periodic motions in the parameter plane during transition are judged. Based on cell mapping and shooting method, the distribution and transition of stable and unstable periodic motion coexisting in high frequency region are analyzed. It is found that the bifurcation coexistence phenomenon occurs at the intersection of the boundary lines of adjacen t multi-state coexistence regions, where different or the same type of bifurcation occurs in the system in different initial states. Since clearance and dry friction widely exist in practical mechanical systems, the study of the dynamical properties of such systems is great significance for the design of the subsequent system parameters and the control of various dynamical behaviors.

关键词

碰撞振动 / 干摩擦 / 分岔 / 吸引子共存 / 转迁特征

Key words

Vibro-impact / Dry friction / Bifurcation / Multiple coexistent attractor;Transition characteristics;

引用本文

导出引用
李得洋1,李孟2,吴少培2,李国芳2,丁旺才2,丁杰2. 单自由度含干摩擦和弹性约束碰振系统周期运动的转迁及共存特征[J]. 振动与冲击, 2024, 43(10): 52-63
LI Deyang1,LI Meng2,WU Shaopei2,LI Guofang2,DING Wangcai2,DING Jie2. Transition and coexistence characteristics of periodic motions of a single-degree-of-freedom vibro-impact system with dry friction[J]. Journal of Vibration and Shock, 2024, 43(10): 52-63

参考文献

[1]Den Hartog, J P. Forced vibrations with combined and viscous damping[J].Transactions on ASME, 1931, 53:107-115. [2]Luca Marino, Alice Cicirello, David A. Hills.Displacement transmissibility of a Coulomb friction oscillator subject to joined base-wall motion[J].Nonlinear Dynamics, 2019, 98:2595–2612. [3]Thomsen J J, Fidlin A. Analytical approximations for stick-slip vibration amplitudes[J]. International Journal of Non-Linear Mechanics, 2003, 3:389-403. [4]牛江川, 张婉洁, 申永军. 复合干摩擦的准零刚度隔振系统的亚谐共振[J].力学学报, 2022, 54(04):1092-1101. Niu Jiangchuan, Zhang Wanjie, Shen Yongjun. Subharmonic resonance of quasi-zero-stiffness vibration isolation system with dry friction damper[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(4): 1092-1101. [5]张海涛, 丁千.干摩擦自激振动周期解的同伦方法[J].振动与冲击, 2011, 30(08):153-156. Zhang Haitao, Ding Qian. The homotopy method for periodic self-excited vibration of a dry-friction system[J]. JOURNAL OF VIBRATION AND SHOCK, 2011, 30(08): 153-156. [6]Piere C, Ferri, A A, et al. Multi-harmonic analysis of dry friction damped system using an incremental harmonic balance method[J].ASME Journal of Applied Mechanics, 1985, 52(4):958-964. [7]钱大帅, 刘占生.基于线性互补原理的干摩擦振动系统非光滑数值算法[J].振动工程学报, 2012, 25(05):506-513. Qian Dashuai , Liu Zhansheng. Non-smooth numerical algorithm for vibration system with dry friction based on linear complementarity principle[J]. Journal of Vibration Engineering, 2012, 25(05):506-513. [8]M.di Bernardo, P. Kowalczyk. Nordmark. Bifurcations of dynamical systems with sliding: derivation of normal-form mappings[J]Physica D: Nonlinear Phenomena, 2002, 170(4): 175-205. [9]P. Kowalczyk, M. di Bernardo. Two-parameter degenerate sliding bifurcations in Filippov systems[J].Physica D, 2005, 204(3): 204-229. [10]Guardia M, Hogan SJ, Seara TM. An analytical approach to codimension-2 sliding bifurcations in the dry-friction oscillator[J].SIAM Journal on Applied Dynamical Systems, 2010, 9(3): 769-798. [11]李群宏, 闫玉龙, 韦丽梅.非线性传送带系统的复杂分岔[J].物理学报, 2013, 62(12):65-74. Li QunHong, Yan YuLong, Wei LiMei. Complex bifurcations in a nonlinear system of moving belt[J].Acta Phys. Sin, 2013, 62(12):65-74. [12]Li Zhixin, Cao Qingjie, Leger Alain. The complicated bifurcation of an archetypal self-excited SD oscillator with dry friction[J].Nonlinear Dynamics, 2017, 89, 91–106. [13]Dieci L, Lopez L. Fundamental matrix solutions of piecewise smooth differential systems[J].Mathematics and Computers in Simulation, 2011, 81(5): 932­953. [14]Li Zhixin, Cao Qingjie, Leger Alain. Multiple Stick-slip Chaotic Motion of an Archetypal Self-excited SD Oscillator driven by Moving Belt Friction[J]. International Journal of Bifurcation and Chaos. [15]王旦,宋立瑶,陈柏.直升机超临界尾传动轴限幅减振器非线性动力学特性研究[J].振动工程学报, 2023, 36(03):593-605. Wang Dan,Song Liyao,Chen Bai. Nonlinear dynamics of a supercritical tail rotor drive shaft equipped with a hybrid damper[J]. Journal of Vibratio n Engineering, 2023, 36(03):593-605. [16]王威,宋玉玲,李瑰贤.独立悬架汽车转向系间隙与干摩擦对其Hopf分岔特性的影响[J].机械工程学报,2011,47(02):130-135. Wang Wei, Song Yuling, Li Guixian. Influence of Independent Suspension Automotive Steering Clearance and Coulomb Friction on Hopf Bifurcation Characteristic[J].Journal of Mechanical Engineering, 2011, 47(2): 130-135. [17]聂日敏, 曹树谦, 郭虎伦. 航空发动机双转子系统高/低压涡轮碰摩振动分析[J]. 振动与冲击, 2021, 40(1): 243-253. Nie Rimin, Cao Shuqian, Guo Hulun. Rub-impact vibration analysis of PH/LH turbines of aeroengine dual-rotor system[J]. JOURNAL OF VIBRATION AND SHOCK, 2021, 40(1): 243-253. [18]张艳龙,唐斌斌,王丽,等.动摩擦作用下含间隙碰撞振动系统的动力学分析[J].振动与冲击,2017,36(24):58-63. Zhang Yanlong, Tang Binbin, Wang Li, et al. Dynamic analysis for a vibro-impact system with clearance under kinetic friction[J]. JOURNAL OF VIBRATION AND SHOCK, 2017, 36(24): 58-63. [19]Om Prakash Yadav, Nalinaksh S. Vyas. Stick-slips and jerks in an SDOF system with dry friction and clearance[J].International Journal of Non-Linear Mechanics, 2021, 137:103790. [20]李书进, 伍大涛, 阳昌娟.摩擦对滚动碰撞式调谐质量阻尼器的影响及其试验研究[J].振动与冲击, 2021,40(14):186-194. Li Shujin, Wu Datao, Yang Changjuan. Effect of friction on a pounding tuned rotary mass damper and its experimental study[J]. JOURNAL OF VIBRATION AND SHOCK, 2021, 40(14): 186-194. [21]李国芳,俞力洋,丁旺才,等. 一类无足自驱动系统的运动特性分析[J]. 振动与冲击, 2020, 39(14): 9-16. Li Guofang, Yu Liyang, Ding Wangcai, et al. Motion characteristics analysis of a wheel-free self-driving system[J]. JOURNAL OF VIBRATION AND SHOCK, 2020, 39(14): 9-16. [22]Erazo C, Homer M E, Piiroinen P T, et al. Dynamic cell mapping algorithm for computing basins of attraction in planar Filippov systems [J]. International Journal of Bifurcation and Chaos, 2017, 27(12): 1730041. [23]Guofang Li, Shaopei Wu, Wangcai Ding.Global dynamics of a non-smooth system with elastic and rigid impacts and dry friction [J]. Communications in Nonlinear Science and Numerical Simulation, 2021, 95: 105603.

PDF(5334 KB)

331

Accesses

0

Citation

Detail

段落导航
相关文章

/