新型动力设备隔振减震器力学性能研究

冯玉龙1,王同龙1,王德才2,完颜健飞3,王成建3

振动与冲击 ›› 2024, Vol. 43 ›› Issue (10) : 64-72.

PDF(2188 KB)
PDF(2188 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (10) : 64-72.
论文

新型动力设备隔振减震器力学性能研究

  • 冯玉龙1,王同龙1,王德才2,完颜健飞3,王成建3
作者信息 +

Mechanical property of a novel vibration isolation and dampingdevice for power equipments

  • FENG Yulong1,WANG Tonglong1,WANG Decai2,WANYAN Jianfei3,WANG Chengjian3
Author information +
文章历史 +

摘要

隔振器可有效降低动力设备工作产生的高频振动,但低频地震下设备隔振器位移响应较大。将碟形弹簧和环形摩擦套筒分别作为竖向隔振和耗能单元,竖向耗能单元内设置振动间隙实现正常使用隔振和地震时减震的两阶段机制,形成一种新型动力设备隔振减震器。基于理论分析给出了隔振减震器的设计流程,并进行了算例设计,采用ABAQUS软件进行了隔振减震器的静力性能分析和动力设备整体系统的动力性能分析。结果表明提出的隔振减震器及其系统的数值模拟与理论计算结果吻合较好;设计算例实现了设备正常工作时仅隔振、地震作用下耗能单元启动的两阶段隔振减震机制;竖向耗能单元使得设备竖向地震位移响应减小超过50%,水平向耗能单元使隔振减震器水平地震剪力减小超过80%,降低了隔振减震器地震倾覆和破坏的风险。

Abstract

Vibration isolators can effectively reduce the high frequency vibration generated due to the use of power equipment, however, the displacement response of the equipment vibration isolator is larger under low-frequency earthquakes. The disc spring and annular friction sleeve are used as a vertical vibration isolation unit and energy dissipation unit respectively, and a vibration gap is set in the vertical energy dissipation unit to achieve a two-stage mechanism of vibration isolation in normal work and damping in earthquakes, which forms a new type of vibration isolation and damping device for power equipment. Based on the theoretical analysis, the design process of the vibration isolation and damping device is given, and an example design is conducted. The static performance analysis of the device and the dynamic performance analysis of the power equipment entire system are carried out using ABAQUS software. The results show that the numerical simulations of the device and the system proposed match well with the theoretical calculation results; the designed example achieves a two-stage vibration isolation and damping mechanism, in which the device only isolates the equipment from vibration when the equipment is working normally, and the vertical energy dissipation unit is activated under earthquakes; the vertical energy dissipation unit reduces the equipment's vertical seismic displacement response by more than 50%, and a horizontal energy dissipation unit reduces the horizontal seismic shear force of the device by more than 80%, which reduce the risk of seismic overturning and damage of the device.

关键词

动力设备 / 两阶段设计 / 隔振减震器 / 静力性能 / 动力性能

Key words

Power equipment / Two-stage design / Vibration isolation and damping device / Static performance / Dynamic

引用本文

导出引用
冯玉龙1,王同龙1,王德才2,完颜健飞3,王成建3. 新型动力设备隔振减震器力学性能研究[J]. 振动与冲击, 2024, 43(10): 64-72
FENG Yulong1,WANG Tonglong1,WANG Decai2,WANYAN Jianfei3,WANG Chengjian3. Mechanical property of a novel vibration isolation and dampingdevice for power equipments[J]. Journal of Vibration and Shock, 2024, 43(10): 64-72

参考文献

[1] 林玮. 液气缓冲器的动态特性分析与优化[D]. 大连理工大学, 2006. [2] El-Sinawi AH. Active vibration isolation of a flexible structure mounted on a vibrating elastic base. Journal of Sound and Vibration 271 (2004) 323-337. [3] Shaw AD, Neild SA, Wagg DJ. Dynamic analysis of high static low dynamic stiffness vibration isolation mounts. Journal of Sound and Vibration 332 (2013) 1437-1455. [4] Elliot SJ, Serrand M, Gardonio P. Feedback stability limits for active isolation systems with reactive and inertial actuators. Journal of Vibration and Acoustics 123 (2001) 250-261. [5] 高伟鹏, 贺国, 杨理华, 等. 分散式自适应主动隔振控制算法研究[J]. 振动与冲击, 2020, 39(13): 254-259. GAO Weipeng, HE Guo, YANG Lihua, et al. Decentralized adaptive active vibration isolation control algorithm [J]. Journal of vibration and shock, 2020, 39(13): 254-259. [6] 陈纠, 蔡龙奇, 刘佳, 等. 泵类设备主动浮筏隔振技术研究[J]. 核动力工程, 2019, 40(02): 49-52. CHEN Jiu, CAI Longqi, LIU Jia, et al. Research on Active Floating Raft of Pumps [J]. Nuclear Power Engineering, 2019, 40(02): 49-52. [7] 周刘彬,杨铁军,张攀, 等.基于弹性舱段结构的浮筏主动隔振系统实验研究[J]. 振动与冲击,2013, 32(17): 145-149+193. ZHOU Liubin, YANG Tiejun, ZHANG Pan, et al. Tests for an active floating raft vibration isolation system based on a flexible hull structure [J]. Journal of vibration and shock, 2013, 32(17): 145-149+193. [8] 朱丽华, 彭志丰, 彭奕亮, 等. 弹簧隔振基础中速磨煤机振动性态分析与动力优化[J]. 振动与冲击, 2012, 31(22): 90-95. ZHU Lihua, PENG Zhifeng, PENG Yiliang, et al. Vibration behavior analysis and dynamic optimization for a medium-speed mill with spring vibration-isolated foundation [J]. Journal of vibration and shock, 2012, 31(22): 90-95. [9] 刘川, 周云耀, 吕永清, 等.被动式单级弹簧隔振系统模型分析[J]. 大地测量与地球动力学, 2013, 33(S2): 109-113+115. LIU Chuan, ZHOU Yunyao, LV Yongqing, et al. Model analysis of passive single stage spring vibration isolation system model analysis [J]. Journal of geodesy and geodynamics, 2013, 33(S2): 109-113+115. [10] 罗军, 唐国金. 航天器隔振器多目标优化方法[J]. 国防科技大学学报, 2014, 36(04):1-4. LUO Jun, TANG Guojin. Multiobjective optimization design of isolator for spacecraft [J]. journal of national university of defense technology, 2014, 36(04):1-4. [11] 孙伟. 复杂隔振系统主被动控制分析与试验研究[D]. 山东大学, 2015. [12] Nicolas ABM, Ian A, Vibration isolation and seismic restraint for mechanical equipment in Chile[C], 2016. [13] Fujita S. Seismic damage of mechanical structures by the 2011 Great East Japan Earthquake [C]. Fujita2012SeismicDO,2012. [14] 李欣一, 翁雪涛, 柴凯.一种新型隔振器的设计与分析[J]. 振动与冲击, 2020, 39(05): 222-226+261. LI Xinyi, WENG Xuetao, CHAI Kai. Design and analysis of a new type vibration isolator [J]. Journal of vibration and shock, 2020, 39(05): 222-226+261. [15] 张兵, 黄华, 蔡佳敏, 等. 冗余六自由度并联隔振平台多维隔振性能研究[J]. 振动与冲击, 2022, 41(02): 26-32. ZHANG Bing, HUANG Hua, CAI Jiamin, et al. Multi-dimensional isolation performances of a redundant 6DOF parallel vibration isolation platform [J]. Journal of vibration and shock, 2022, 41(02): 26-32. [16] 程永锋, 朱光楠, 刘振林, 等. 基于非线性准零刚度理论设计的变电站机柜用隔震装置试验研究[J]. 中国电机工程学报, 2021, 41(13): 4516-4525. CHENG Yongfeng, ZHU Guangnan, LIU Zhenlin, et al. Test study of vibration isolation device for substation cabinets based on nonlinear quasi-zero stiffness theory design [J]. Proceedings of the CSEE, 2021, 41(13): 4516-4525. [17] 周佳豪, 潘洪斌, 蔡昌琦, 等. 准零刚度柔性隔振超结构设计与仿真分析[J]. 哈尔滨工程大学学报, 2022, 43(09): 1258-1264. ZHOU Jiahao, PAN Hongbin, CAI Changqi, et al. Design and simulation analysis of a quasi-zero stiffness flexible vibration isolation metastructure [J]. Journal of Harbin Engineering University, 2022, 43(09): 1258-1264. [18] Song HN, Shan XB, Hou WJ, et al. A novel piezoelectric-based active-passive vibration isolator for low-frequency vibration system and experimental analysis of vibration isolation performance. Energy, 2023. [19] Fathali S , Filiatrault A. [2007] Experimental Seismic-performance Evaluation of Isolation/Restraint Systems for Mechanical Equipment; Part I: Heavy Equipment Study,Technical Report MCEER-07-0007, Multidisciplinary Center for Earthquake Engineering Research (MCEER), The State University of New York at Buffalo, Buffalo, New York. [20] Wang SJ, Yang YH, Lin FR, et al. Experimental Study on Seismic Performance of Mechanical/Electrical Equipment with Vibration Isolation Systems. Journal of Earthquake Engineering, 2017. [21] 王维, 李爱群, 秦焰宏, 等. 碟形弹簧复合隔震支座力学性能试验与数值模拟研究[J]. 建筑结构学报, 2018, 39(05): 99-105. WANG Wei, LI Aiqun, QIN Yanhong, et al. Experiment and numerical simulation on mechanical performance of disc spring compound isolation bearings [J]. Journal of Building Structures, 2018, 39(05): 99-105. [22] 牛江川, 张婉洁, 申永军, 等. 复合干摩擦的准零刚度隔振系统的亚谐共振[J]. 力学学报, 2022, 54(04): 1092-1101 .NIU Jiangchuan, ZHANG Wanjie, SHEN Yongjun, et al. Subharmonic resonance of quasi-zero-stiffness vibration isolation system with dry friction damper [J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(04): 1092-1101. [23] GB/T 1972-1992碟形弹簧[S]. 北京, 中国机械工业联合会, 2005. [24] 刘宇航. 基于金属螺旋弹簧的大承载隔振器设计及样件试验[D].西南交通大学,2020. [25] 姜东, 李红星, 刘宝泉, 等. 火力发电厂碎煤机隔振设计研究[J]. 武汉大学学报(工学版), 2021, 54(S2): 96-102. JIANG Dong, LI Hongxing, LIU Baoquan, et al. Research on vibration isolation design of coal crusher in the thermal power plant [J]. Engineering Journal of Wuhan University, 2021, 54(S2): 96-102.

PDF(2188 KB)

360

Accesses

0

Citation

Detail

段落导航
相关文章

/