不同厚宽比矩形截面柱体涡激振动的数值研究

祝瑜哲,陈伏彬

振动与冲击 ›› 2024, Vol. 43 ›› Issue (10) : 73-81.

PDF(2399 KB)
PDF(2399 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (10) : 73-81.
论文

不同厚宽比矩形截面柱体涡激振动的数值研究

  • 祝瑜哲,陈伏彬
作者信息 +

Numerical study on the vortex-induced vibration of a rectangular cross section cylinder with different side ratios

  • ZHU Yuzhe,CHEN Fubin
Author information +
文章历史 +

摘要

厚宽比的变化将导致矩形截面柱体周边流场的变化,进而影响结构气动性能及其涡激振动响应。基于Fluent软件平台,以雷诺数22000的二维矩形截面柱体为对象,结合重叠网格技术与四阶龙格-库塔法,研究了厚宽比对其涡激振动的影响,从流场角度进行了影响机理分析。首先,选择厚宽比D/B=4.0的矩形截面,将计算结果与相关文献试验与模拟对比,验证了本文模拟方法及参数设置的有效性;然后,从气动力系数统计值及自谱、流向与横风向振幅变化以及相位转变等角度,对比分析了厚宽比对结构涡激振动响应的影响;最后,从瞬态流场的角度,分析了不同折减风速对柱体尾涡脱落的影响。结果表明,在柱体截面面积不变时,较小厚宽比柱体的涡振响应极为微弱,气动性能也明显低于大厚宽比柱体,大厚宽比柱体的气动性能及涡振响应高于标准方柱,振幅也会在较低折减风速下发生突变,但会在较高折减风速下达到振幅峰值。比起圆柱等结构,分离角固定的矩形柱体的尾涡脱落模式对折减风速的变化并不敏感,这一特征在大厚宽比方柱上表现更为明显。

Abstract

The change of the side ratio(D/B) for a rectangular cross cylinder will lead to the variation of the surrounding flow field, affecting the aerodynamic performance and vortex-induced vibration(VIV) response on the cylinder. Based on the Fluent platform, the effects of side ratio on vortex-induced vibration of a two-dimensional rectangular cross cylinder with Reynolds number 22000 were studied in combination with the overset grid technology and the fourth-order Runge-Kutta method. Firstly, a rectangular section with a side ratio of D/B=4.0 was selected, and the effectiveness of the simulation method and parameter settings was verified by comparing with the calculated results and relevant literature tests and simulations. Then, the effects of the side ratio on the response of VIV for the rectangular cross cylinder are compared and analyzed from the statistical values of aerodynamic force coefficients, the self-spectrum and the amplitude changes for the flow and transverse direction, and the phase transition. Finally, the influence of different reduced velocity on the wake vortex shedding was analyzed from the respect of transient flow field. The results show that, when the section area of the cross cylinder fixed, the response of VIV for the cylinder with a small side ratio is very weak, and the aerodynamic performance is significantly lower than that of the cylinder with a large side ratio. The aerodynamic performance and VIV response on the cylinder with a large side ratio are higher than that of the standard square cylinder. The amplitude ratio of the cylinder will also change abruptly at a lower reduced velocity, but will reach the peak amplitude at a higher reduced velocity. Compared with the cylindrical structure, the vortex shedding mode of the rectangular cylinder with fixed separation angle is not sensitive to the change of the reduced velocity, which is more obvious on the large side ratio rectangular cylinder than the square cylinder.

关键词

数值模拟 / 厚宽比 / 涡激振动 / 折减风速 / 振幅比 / 瞬态流场

Key words

numerical simulation / side ratio / vortex-induced vibration / reduced velocity / amplitude ratio / transient flow field

引用本文

导出引用
祝瑜哲,陈伏彬. 不同厚宽比矩形截面柱体涡激振动的数值研究[J]. 振动与冲击, 2024, 43(10): 73-81
ZHU Yuzhe,CHEN Fubin. Numerical study on the vortex-induced vibration of a rectangular cross section cylinder with different side ratios[J]. Journal of Vibration and Shock, 2024, 43(10): 73-81

参考文献

[1] 邢景棠,周盛,崔尔杰.流固耦合力学概述[J].力学进展,1997(01):20-39. XING Jingtang, ZHOU Sheng, CHUI Erjie. A survey on the fluid-solid interaction mechanics[J]. Advances in Mechanics,1997(01):20-39. [2] ZHANG M J,XU F Y,ØISETH O. Aerodynamic damping models for vortex-induced vibration of a rectangular 4:1 cylinder: Comparison of modeling schemes[J].Journal of Wind Engineering and Industrial Aerodynamics,2020,205:104321. [3] 黄铭枫,唐归,陶慕轩,等.赛格广场大厦楼顶双桅杆结构的风致高阶涡振分析[J].建筑结构学报,2022,43(12):1-10. HUANG Mingfeng, TANG Gui, TAO Muxuan, et al. Wind-induced high-order vibration of a twin-mast with large cross-section at top of Saige Plaza Building[J]. Journal of Building Structures,2022,43(12):1-10. [4] 李钧睿,周云,林超伟,等.某大厦楼顶桅杆天线涡激振动控制分析[J].建筑结构,2023,53(04):135-142. LI Junrui, ZHOU Yun, LIN Chaowei, et al. Analysis on vortex-induced vibration control of mast antenna of a super high-rise building[J]. Building Structure,2023,53(04):135-142. [5] 郭健,钟陈杰,吴继熠,等.西堠门大桥涡激振动特征分析[J].工程力学,2023,40(S1):39-45. GUO Jian, ZHONG Chenjie, WU Jiyi, et al. Analysis on vortex-induced vibration characteristic of Xihoumen bridge[J]. Engineering Mechanics,2023,40(S1):39-45. [6] Tamura Y, Fujii K. Visualization for computational fluid dynamics and the comparison with experiments[C]//Flight Simulation Technologies Conference and Exhibit. 1990: 3031. [7] Dodge L G, Schwalb J A. Fuel Spray Evolution: Comparison of Experiment and CFD Simulation of Nonevaporating Spray[J]. Journal of Engineering for Gas Turbines & Power, 1989, 111(1):15-23. [8] 崔鹏,郭海燕,顾洪禄,等.顶张力立管三维涡激振动研究[J].中国海洋大学学报(自然科学版),2022,52(11):149-156. CUI Peng, GUO Haiyan, GU Honglu, et al. Three-dimensional vortex-induced vibration of top tensioned riser[J]. Periodical of Ocean University of China,2022,52(11):149-156. [9] 熊涛,许育升,陈银伟,等.矩形柱的涡振三维特性数值模拟研究[J].交通科学与工程,2023,39(02):62-70+79. XIONG Tao, XU Yusheng, CHEN Yinwei, et al. Numerical simulation of three-dimensional vortex-induced vibration characteristics of rectangular columns[J]. Journal of Transport Science and Engineering,2023,39(02):62-70+79. [10] GUISSART A, ANDRIANNE T, DIMITRIADIS G, et al. Numerical and experimental study of the flow around a 4∶1 rectangular cylinder at moderate Reynolds number[J].Journal of Wind Engineering and Industrial Aerodynamics,2019,189:289-303. [11] 祝贺,陈文龙,曹煜锋,等.基于嵌套网格方法的悬跨海缆涡激振动特性仿真[J/OL].高电压技术:1-10[2023-08-09]. ZHU He, CHEN Wenlong, CAO Yufeng, et al. Vortex-induced vibration characteristic simulation of suspended submarine cable based on nested grid method[J/OL]. High Voltage Engineering:1-10[2023-08-09]. [12] 陈东阳,杨加栋,张晓灵,等.翼型尾流干涉下的柱体结构涡振特性研究[J].振动与冲击,2023,42(10):221-229. CHEN Dongyang, YANG Jiadong, ZHANG Xiaoling, et al. simulation of vortex induced vibration of cylinder structure under airfoil interference[J]. Journal of Vibration and Shock, 2023,42(10):221-229. [13] 姜泽成,高云,刘磊,等.不同入射角下圆柱涡激振动的数值研究[J].振动与冲击,2023,42(06):289-297. JIANG Zecheng, GAO Yun, LIU Lei, et al. numerical study on the vortex-induced vibration of a circular cylinder at different incidences[J]. Journal of Vibration and Shock, 2023,42(06):289-297. [14] 刘旭菲,陈威霖,及春宁.质量比对近壁面两向自由度圆柱涡激振动的影响[J].振动与冲击,2022,41(12):267-274. LIU Xufei, CHEN Weilin, JI Chunning. Effects of mass ratio on vortex-induced vibrations of a two degree-of-freedom near-wall cylinder[J]. Journal of Vibration and Shock,2022,41(12):267-274. [15] Chen W, Wang H, Chen C. Experimental investigation of the vortex-induced vibration of a circular cylinder near a flat plate[J]. Ocean Engineering, 2023, 272: 113794. [16] Gao Y, Jiang Z, Ma L, et al. Numerical study of vortex-induced vibrations of a circular cylinder at different incidence angles[J]. Ocean Engineering,2022,259:111858. [17] Liu Y, Liu F, Xiao Q, et al. The effect of inclination on vortex-induced vibration of a circular cylinder with a base column[J]. Ocean Engineering,2020,206:107332. [18] 张磊,李波,甄伟,等.某大厚宽比超高层建筑风致扭转效应及风振控制研究[J].建筑结构学报,2023,44(04):87-97. ZHANG Lei, LI Bo, ZHEN Wei, et al. Research on wind-induced torsional vibration response and vibration control of super-tall building with a large side ratio[J]. Journal of Building Structures, 2023,44(04):87-97. [19] 袁家辉,陈水福,刘奕.不同长宽比矩形高层建筑的横风向风力特性[J].中南大学学报(自然科学版),2021,52(12):4361-4371. YUAN Jiahui, CHEN Shuifu, LIU Yi. Characteristics of across-wind force of rectangular high-rise buildings with different side ratios[J]. Journal of Central South University(Science and Technology),2021,52(12):4361-4371. [20] 沈国辉,余杭聪,李懿鹏,等.不同长宽比高层建筑沿高度分布的风荷载[J].土木工程学报,2022,55(11):26-37. SHEN Guohui, YU Hangcong, LI Yipeng, et al. wind load along building height for high-rise buildings with different length-width ratios[J]. China Civil Engineering Journal,2022,55(11):26-37. [21] Yin Y, Wang H, Li H. Effects of flexible films on the aerodynamics of a 5:1 rectangular cylinder[J]. Experimental Thermal and Fluid Science,2023,144:110870. [22] 尹亚鹏,王汉封,李欢,等. 柔性附属结构对5:1矩形柱体气动特性的影响[J].中南大学学报(自然科学版),2023,54(4):1603−1612. YIN Yapeng, WANG Hanfeng, LI Huan, et al. Effects of flexible accessory structure on aerodynamic characteristics of a 5:1 rectangular cylinder[J]. Journal of Central South University(Science and Technology),2023,54(4):1603−1612. [23] WU Bo, LI Shaopeng, LI Ke, et al. Numerical and experimental studies on the aerodynamics of a 5:1 rectangular cylinder at angles of attack[J]. Journal of Wind Engineering and Industrial Aerodynamics,2020,199:104097 [24] 刘志文,周帅,陈政清.宽高比为4的矩形断面涡激振动响应数值模拟[J].振动与冲击,2011,30(11):153-156+202. LIU Zhiwen, ZHOU Shuai, CHEN Zhengqing. Numerical simulation of vortex induced vibration of rectangular cylinder with aspect ratio 4[J]. Journal of Vibration and Shock,2011,30(11):153-156+202. [25] Matsumoto M, Yagi T, Tamaki H, et al. Vortex-induced vibration and its effect on torsional flutter instability in the case of B/D=4 rectangular cylinder[J]. Journal of Wind Engineering & Industrial Aerodynamics,2008,96(6-7):971-983. [26] Sun D, Owen J S, Wright N G. Application of the k–ω turbulence model for a wind-induced vibration study of 2D bluff bodies[J].Journal of Wind Engineering & Industrial Aerodynamics,2009,97(2):77-87. [27] Nakaguchi H, Hashimoto K, Muto S. An Experimental Study on Aerodynamic Drag of Rectangular Cylinders[J].Journal of the Japan Society for Aeronautical & Space Sciences,1968,16(168):1-5. [28] Khalak A, Williamson C H K. Fluid forces and dynamics of a hydroelastic structure with very low mass and damping[J]. Journal of Fluids and Structures,1997,11(8):973-982. [29] 董欣,丁洁民,邹云峰,等.倒角化处理对于矩形高层建筑风荷载特性的影响机理研究[J].工程力学,2021,38(06):151-162+208. DONG Xin, DING Jiemin, ZOU Yunfeng, et al. Effect of rounded corners on wind load characteristics of rectangular tall buildings[J].Engineering Mechanics,2021,38(06):151-162+208. [30] Zhao M, Cheng L, Zhou T. Numerical simulation of vortex-induced vibration of a square cylinder at a low Reynolds number[J].Physics of Fluids, 2013, 25(2):455-472. [31] 杜晓庆,邱涛,郑德乾,等.低雷诺数中等间距串列双方柱涡激振动的数值模拟[J].哈尔滨工业大学学报,2020,52(10):94-101. DU Xiaoqing, QIU Tao, ZHENG Deqian, et al. Numerical simulation on vortex-induced vibration of two tandem square cylinders with medium spacing at a low Reynolds number[J]. Journal of Harbin Institute of Technology, 2020, 52(10):94-101. [32] Williamson C H K, Roshko A. Vortex formation in the wake of an oscillating cylinder[J]. Journal of Fluids & Structures, 1988, 2(4):355-381.

PDF(2399 KB)

309

Accesses

0

Citation

Detail

段落导航
相关文章

/