基于FGMs的声子晶体带隙调控及振动特性研究

徐庚辉1,肖汉林2,张琳1,王雨桐1,张涛1

振动与冲击 ›› 2024, Vol. 43 ›› Issue (10) : 89-97.

PDF(3380 KB)
PDF(3380 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (10) : 89-97.
论文

基于FGMs的声子晶体带隙调控及振动特性研究

  • 徐庚辉1,肖汉林2,张琳1,王雨桐1,张涛1
作者信息 +

Investigation on the tunable band-gap and vibration characteristics of phononic crystals based on FGMs

  • XU Genghui1,XIAO Hanlin2,ZHANG Lin1,WANG Yutong1,ZHANG Tao1
Author information +
文章历史 +

摘要

为抑制舰艇典型板壳结构低频振动,本文基于局域共振理论,设计了一种悬臂式声子晶体结构,开展了数值计算并揭示带隙发生机理,探究了各尺寸参数对带隙特性的影响。同时基于功能梯度材料FGMs(Functional Gradient Materials )思想,提出固有频率梯度组合带隙调控方法,可有效拓宽低频带隙范围。最后,设计振动特性试验并分析误差产生的原因。结果表明:悬臂梁边长越长,带隙宽度变窄,悬臂梁宽度及厚度增加,带隙宽度变宽;固有频率梯度组合研究中,当整体固有频率变化率小于8.1%时,带隙范围有效拓宽。当相邻两者固有频率变化率大于12.27%时,可呈现多频带隙特性;增加悬臂梁安装数量可在固有频率梯度组合的基础上进一步拓宽禁带范围,该研究成果可为船舶板壳结构隔振设计提供参考。

Abstract

To suppress low frequency vibrations in typical plate and shell structures of ships, this paper designs a cantilever beam phononic structure based on local resonance theory. The bandgap mechanism is revealed by numerical calculations to investigate the influence of dimensional parameter on the bandgap characteristics. In addition, natural frequency gradients approach is proposed based on the Functional Gradient Materials method, which can effectively widen the low frequency forbidden band range. Finally, vibration characteristics tests were designed and analysed for error reasons. The results show that: The longer the edge length of the cantilever beam, the narrower the band gap width. As the width and thickness of the cantilever beam increases, the band gap width widens. In the natural frequency gradient method, the band gap range is effectively widened when the overall rate of change is less than 8.1%. When the rate of change of adjacent natural frequencies is more than 12.27%, a multi-frequency band gap characteristic can be presented; increasing the number of cantilever beam installations can further widen the forbidden band range on the basis of the natural frequency gradient, and the research results can provide reference for the vibration isolation design of ship shell structures.

关键词

声子晶体 / 薄板结构 / 悬臂式振子 / 梯度组合方法 / 振动特性试验

Key words

phononic crystals / plate structure / cantilever vibrator / natural frequency gradient / vibration test

引用本文

导出引用
徐庚辉1,肖汉林2,张琳1,王雨桐1,张涛1. 基于FGMs的声子晶体带隙调控及振动特性研究[J]. 振动与冲击, 2024, 43(10): 89-97
XU Genghui1,XIAO Hanlin2,ZHANG Lin1,WANG Yutong1,ZHANG Tao1. Investigation on the tunable band-gap and vibration characteristics of phononic crystals based on FGMs[J]. Journal of Vibration and Shock, 2024, 43(10): 89-97

参考文献

[1] 孔帅,田于逵,崔洪宇,等. 面向船体结构动冰载荷监测的线性形函数识别方法研究[J]. 振动与冲击. 2022, 41(14): 226-232. KONG Shuai, TIAN Yukui, CUI Hongyu, et al. Identification method using the combination of linear shape functions for t-he monitoring of dynamic ice load on ship structures[J]. Jour-nal of Vibration and Shock, 2022, 41(14): 226-232. [2] 吴九汇,马富银,张思文,等. 声学超材料在低频减振降噪中的应用评述[J]. 机械工程学报. 2016, 52(13): 68-78. WU Jiuhui, MA Fuyin, ZHANG Siwen, et al. Application of Acoustic Metamaterials in Low-frequency Vibration and Noi-se Reduction [J]. Journal of Mechanical Engineering,2016, 52(13): 68-78. [3] 赵楠,王禹,陈林,等. 分布式声学黑洞浮筏系统隔振性能研究[J]. 振动与冲击. 2022, 41(13): 75-80. ZHAO Nan, WANG Yu, CHEN Lin, et al. Vibration isolation performance of distributed acoustic black hole floating raft system[J]. Journal of Vibration and Shock, 2022, 41(13): 75-80. [4] Zhang L, Zhang T, Ouyang H J, et al. Receptance-based natur-al frequency assignment of a real fluid-conveying pipeline system with interval uncertainty[J]. Mechanical Systems and Signal Processing, 2022. [5] 王凯,周加喜,蔡昌琦,等. 低频弹性波超材料的若干进展[J]. 力学学报. 2022, 54(10): 2678-2694. Wang Kai, Zhou Jiaxi, Cai Changqi, et al. Review of low-fre-quency elastic wave metamaterials[J]. Chinese Journal of Th-eoretical and Applied Mechanics, 2022, 54(10): 2678-2694. [6] Ruan Y D, Liang X, Hua X Y, et al. Isolating low-frequency v-ibration from power systems on a ship using spiral phononic crystals[J]. Ocean engineering, 2021, 225: 108804. [7] Tao Y P, Ren M S, Zhang H, et al. Recent progress in acoustic materials and noise control strategies - A review[J]. Applied Materials Today, 2021, 24: 101141. [8] 金星,张振华. 幂指数棱台声子晶体对薄板振动弯曲波的调控特性研究[J/OL]. 振动工程学报. 2022: 1-9. JIN Xing, ZHANG Zhenhua. Flexural wave manipulation in thin-slab structure with power exponent prismatic phononic crystals[J/OL]. Journal of Vibration Engineering, 2022: 1-9. [9] An X Y, Lai C L, He W P, et al. Three-dimensional chiral meta-plate lattice structures for broad band vibration suppression a-nd sound absorption[J]. Composites Part B: Engineering, 2021, 224: 109232. [10] Cai C Q, Zhou J X, Wang K, et al. Flexural wave attenuation by metamaterial beam with compliant quasi-zero-stiffness resonators[J]. Mechanical systems and signal processing, 2022, 174: 109119. [11] Shi K K, Hu D S, Li D S, et al. Sound absorption behaviors of composite functionally graded acoustic structure under hydrostatic pressure[J]. Applied acoustics, 2023, 211. [12] Gao W R, Yang B, Hong Y, et al. Investigation on tunable low-frequency property of magnetic field induced phononic crystal with Archimedean spiral-beams[J]. Mechanical Systems and Signal Processing, 2023, 185: 109756. [13] Liu X H, Chen N, Jiao J R, et al. Pneumatic soft phononic cry-stals with tunable band gap[J]. International Journal of Mechanical Sciences, 2023. [14] Wang T T, Wang Y F, Deng Z C, et al. Reconfigurable waveguides defined by selective fluid filling in two-dimensional pho-nonic metaplates[J]. Mechanical Systems and Signal Processing, 2022, 165: 108392. [15] Shen Y, Qian Y J, Wang Y B, et al. Experimental investigation on bandgap properties of lead/silicone rubber phononic crystals[J]. Structures, 2022, 46: 1626-1633. [16] Zhang Z, Zhang Z H, Jin X. Investigation on band gap mechanism and vibration attenuation characteristics of cantilever-bea-m-type power-exponent prismatic phononic crystal plates[J]. Applied Acoustics, 2023, 206: 109314. [17] 訾欢,李应刚,胡蜜,等. 周期性舰船夹芯板弯曲波带隙与减振降噪研究[J]. 中国舰船研究. 2023, 18(2): 81-89. ZI H, LI Y G, HU M, et al. Flexural wave bandgap and isolation characteristics o

PDF(3380 KB)

Accesses

Citation

Detail

段落导航
相关文章

/