南昌地铁含泥饱和砂土的三剪次加载面模型

胡小荣,路祥,袁豪

振动与冲击 ›› 2024, Vol. 43 ›› Issue (10) : 9-20.

PDF(2858 KB)
PDF(2858 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (10) : 9-20.
论文

南昌地铁含泥饱和砂土的三剪次加载面模型

  • 胡小荣,路祥,袁豪
作者信息 +

Triple-shear subloading surface models for saturated clayey sand in the nanchang subway

  • HU Xiaorong,LU Xiang,YUAN Hao
Author information +
文章历史 +

摘要

以三剪强度准则作为破坏准则,推导出饱和土的三剪破坏应力比。考虑到砂土的剪胀特性,引入剪胀状态参量对三剪破坏应力比进行修正得到相变应力比。用相变应力比对修正剑桥模型中为定值的破坏应力比进行替换,得到新的屈服函数。将其与次加载面理论相结合,提出含泥饱和砂土三剪次加载面模型。取用南昌地铁某路线路段地下砂土和黏土作为试验土样,砂土中掺入粒径小于0.075mm的黏土作为含泥砂土,并设定密实度为70%的试样质量含泥为0%、5%和10%,通过相关土工试验确定模型参数。将本构模型计算结果与常规静三轴试验结果和循环常规动三轴试验结果进行对比验证。静三轴试验验证结果表明,本构模型计算结果与试验结果变化规律基本一致,验证了该本构模型的正确性。其他条件相同情况下,随着含泥量增大,土体抗剪强度增大,体积剪缩阶段变长,剪胀现象越不明显。动三轴试验验证结果表明,本构模型数值计算曲线与试验结果吻合较好,在加载初期土体塑性应变发展较快,随着加载和卸载的不断交替以及循环次数的不断增加,滞洄圈变得越来越密集。

Abstract

Taking the triple-shear strength criterion as the failure criterion, the triple-shear failure stress ratio of saturated soil was derived. Considering the dilatancy of sand, the phase transformation stress ratio was modified by introducing dilatancy state parameters. A new yield function was obtained by replacing the fixed failure stress ratio in the modified Cambridge model with the phase transformation stress ratio. Combining the new yield function with the theory of subloading surface model, the triple-shear subloading surface model for saturated clayey sands was proposed. The underground sand and clay in a section of Nanchang Metro were taken as test soil samples. Clay with particle size of less than 0.075mm was added to the sand to make the clayey sands. The compactness of the sample was set to 70%, and the clay contents were set to 0%, 5% and 10%, and the model parameters were determined by relevant geotechnical tests. The results of constitutive model were compared with those of the conventional static triaxial tests and cyclic dynamic triaxial tests. The results of static triaxial test showed that the calculation results of the constitutive model are basically consistent with the experimental results, which indicates the validity of the constitutive model. Under the same conditions, with the increase of clay content, the shear strength of soil increases, the shear shrinkage stage becomes longer, and the dilatancy phenomenon becomes less obvious. The results of dynamic triaxial tests showed that the numerical calculation curves of the constitutive model are in good agreement with the experimental results. In the initial stage of loading, the plastic strain of soil develops rapidly. With the continuous alternations of loading and unloading and the increasing number of cycles, the hysteresis loops become more and more dense.

关键词

含泥饱和砂土 / 三剪次加载面 / 三剪强度准则 / 本构模型 / 三轴试验

Key words

Saturated clayey sands / Triple-shear subloading surface / Triple-shear strength criterion / Constitutive model / Triaxial test

引用本文

导出引用
胡小荣,路祥,袁豪. 南昌地铁含泥饱和砂土的三剪次加载面模型[J]. 振动与冲击, 2024, 43(10): 9-20
HU Xiaorong,LU Xiang,YUAN Hao. Triple-shear subloading surface models for saturated clayey sand in the nanchang subway[J]. Journal of Vibration and Shock, 2024, 43(10): 9-20

参考文献

[1] 栾茂田,聂影,杨庆等.不同应力路径下饱和黏土耦合循环剪切特性[J].岩土力学,2009,30(07):1927-1932. LUAN Maotian, NIE Ying, YANG Qing,et al. Study of coupling cyclic test of saturated clay under different stress paths[J]. Rock and Soil Mechanics, 2009,30(07):1927-1932. [2] 尹松,孔令伟,杨爱武等.循环振动作用下残积土动力变形特性试验研究[J].振动与冲击,2017,36(11):224-231. YIN Song, KONG Lingwei, YANG Aiwu, et al. Tests for dynamic deformation characteristics of residual soil under cyclic loading[J]. Journal of Vibration and Shock, 2017,36(11):224-231. [3] Dafalias Y F . Plastic spin: necessity or redundancy[J]. International Journal of Plasticity, 1998, 14(9):909-931. [4] Yannis, F, Dafalias, et al. A simple anisotropic clay plasticity model[J]. Mechanics Research Communications, 2002. [5] Hashiguchi K, Chen Z P . Elastoplastic constitutive equation of soils with the subloading surface and the rotational hardening[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1998, 22(2):197. [6] 王孝文,阚前华,李建等.基于次加载面的循环塑性模型研究[J].塑性工程学报,2020,27(04):138-145. WAGN Xiaowen, KAN Qianhua, LI Jian, et al. Study on subloading surface-based cyclic plastic model[J]. Journal of Plasticity Engineering, 2020,27(04):138-145. [7] WAN Z, YAO Y P, GAO Z W. Comparison study of constitutive model for overconsolidated clays[J]. Acta Mechanica Solida Sinica, 2020,33(4):98-120. [8] 孔亮,郑颖人,姚仰平.基于广义塑性力学的土体次加载面循环塑性模型(Ⅰ):理论与模型[J].岩土力学,2003(02):141-145. KONG Liang, ZHENG Yingren, YAO Yangping. Subloading surface cyclic plastic model for soil based on Generalized plasticity (Ⅰ): Theory and model [J]. Rock and Soil Mechanics, 2003(02):141-145. [9] 孔亮,郑颖人,姚仰平.基于广义塑性力学的土体次加载面循环塑性模型(Ⅱ):本构方程与验证[J].岩土力学,2003(03):349-354. KONG Liang, ZHEGN Yingren, YAO Yangping. Subloading surface cyclic plastic model for soil based on Generalized plasticity (Ⅱ): Constitutive equation and identification[J]. Rock and Soil Mechanics, 2003(03):349-354. [10] 詹云刚,袁凡凡,栾茂田.基于次加载面理论改进的ALPHA模型及其数值实施[J].岩土力学,2010,31(02):407-415. ZHAN Yungang, YUAN Fanfan, LUAN Maotian. A modified ALPHA model based on subloading surface theory and its numerical implementation[J]. Rock and Soil Mechanics, 2010,31(02):407-415. [11] 于雷,王建华.修正的饱和黏土次加载面模型[J].低温建筑技术,2014,36(01):93-96. YU Lei, WANG Jianhua. A subloading surface model for cyclic behavior of saturated clay[J].Low Temperature Architecture,2014,36(01):93-96. [12] 马少坤,赵乃峰,潘柏羽等.改进超固结状态参量次加载面模型数值实现与应用[J].土木建筑与环境工程,2015,37(02):16-22. MA Shaokun, ZHAO Naifeng, PAN Baiyu, et al. Numerical implementation and applications on subloading surface model with improved overconsolidation state variable[J].Journal of Chongqing Jianzhu University, 2015,37(02):16-22. [13] Ozaki S, Hikida K, Hashiguchi K. Elastoplastic formulation for friction with orthotropic anisotropy and rotational hardening[J]. International Journal of Solids and Structures, 2012, 49(s3–4):648–657. [14] Shun-hua Xu, Gang Zheng, Yan Jiang. A critical state subloading surface model of sands with shear hardening[J]. Journal of Central South University of Technology,2008. [15] Bian X, Hong Z S, Ding J W. Evaluating the effect of soil structure on the ground response during shield tunnelling in Shanghai soft clay[J]. Tunnelling and Underground Space Technology incorporating Trenchless Technology Research,2016,58(sep.):120-132. [16] Zhou Y Q, Sheng Q, Li N, et al. Numerical investigation of the deformation properties of rock materials subjected to cyclic compression by the finite element method[J]. Soil Dynamics and Earthquake Engineering, 2019, 126(11):105795.1-105795.14. [17] Zhou Y Q, Sheng Q, Li N, et al. A constitutive model for rock materials subjected to triaxial cyclic compression[J]. Mechanics of Materials,2020,144: 103341. [18] 俞茂宏,杨松岩,范寿昌等.双剪统一弹塑性本构模型及其工程应用[J].岩土工程学报,1997(06):2-10. YU Maohong, YANG Songyan, FAN Shouchang, et al. Twin shear unified elasto-plastic constitutive model and its applications[J].Chinese Journal of Geotechnical Engineering, 1997(06):2-10. [19] 胡小荣,俞茂宏.材料三剪屈服准则研究[J].工程力学,2006(04):6-11. HU Xiaorong, YU Maohong. Research on triple-shear yield criterion for materials [J].Engineering mechanics, 2006(04):6-11. [20] 胡小荣, 魏雪英, 俞茂宏. 三轴压缩下岩石强度与破坏面角度的双剪理论分析 [J]. 岩石力学与工程学报, 2003, 22(7): 1093-1098. HU Xiaorong, WEI Xueying, YU Maohong. Characteristics of rock strenger and failure under triaxial compression analyzed by twin shear theory[J]. Chinese Journal of Rock Mechanics and Engineering, 2003,22(7): 1093-1098. [21] 迟明杰.砂土的剪胀性及本构模型的研究[D].北京:北京交通大学,2008. CHI Mingjie. Study on the dilatancy and constitutive model of sand [D]. Bei’jing: Bei’jing Jiaotong University,2008. [22] 蔡晓锋,李春博,路祥等.正常固结饱和黏性土的三剪次加载面模型[J].南昌大学学报(工科版),2022,44(02):146-154. CAI Xiaofeng, LI Chunbo, LU Xiang, et al. Triple-shear subloading surface model for saturated clays in normal consolidation[J]. Journal of Nanchang University(Engineering & Technology),2022,44(02):146-154. [23] Hashiguchi K. Subloading surface model in unconventional plasticity[J]. International Journal of Solids and Structures,1989,25(8):917-945. [24] Hashiguchi K. Exact Formulation of Subloading Surface Model: Unified Constitutive Law for Irreversible Mechanical Phenomena in Solids[J]. Archives of Computational Methods in Engineering,2016,23(3):417-447. [25] Hashiguchi K. Foundations of Elastoplasticity: Subloading Surface Model[M]. Springer, Cham:2017. [26] Baoyin S, Yantai Z, Denghui D, et al. Seismic fragility analysis of a large-scale frame structure with local nonlinearities using an efficient reduced-order Newton-Raphson method[J]. Soil Dynamics and Earthquake Engineering,2023,164. [27] 董肖龙.饱和砂土的三剪统一弹塑性边界面模型研究[D]. 南昌: 南昌大学,2018. DONG Xiaolong. Approaches to the triple-shear unified elasto-plasticity bounding surface model for saturated sand[D]. Nan’chang: Nan’chang University,2018. [28] 周永强,盛谦,冷先伦等.基于循环加卸载的次加载面模型在岩石中的初步应用[J].岩石力学与工程学报,2015,34(10):2073-2082. ZHOU Yongqiang, SHENG Qian, LENG Xianlun, et al. Preliminary application of subloading surface to cyclic plastic model for rock under cyclic loading[J]. Chinese Journal of Rock Mechanics and Engineering, 2015,34(10):2073-2082. [29] 孔亮,花丽坤,郑颖人.土体循环塑性模型研究进展[J].水利水运工程学报,2004(04):61-69. KONG Liang, HUA Likun, ZHEGN Yingren. Review of soil cyclic plastic models[J]. Hydro-Science and Engineering, 2004(04):61-69.

PDF(2858 KB)

Accesses

Citation

Detail

段落导航
相关文章

/