附有Savonius叶轮结构的圆柱体流致旋转耦合涡激振动数值研究

刘馨涵1,娄敏1,王宇1,李想2

振动与冲击 ›› 2024, Vol. 43 ›› Issue (10) : 98-105.

PDF(1944 KB)
PDF(1944 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (10) : 98-105.
论文

附有Savonius叶轮结构的圆柱体流致旋转耦合涡激振动数值研究

  • 刘馨涵1,娄敏1,王宇1,李想2
作者信息 +

Numerical study on the flow-induced rotation coupled with vortex-induced vibration of a cylinder with Savonius impeller structure

  • LIU Xinhan1,LOU Min1,WANG Yu1,LI Xiang2
Author information +
文章历史 +

摘要

针对附有Savonius叶轮结构的新型圆柱体能量转换装置开展数值模拟研究,利用用户自定义函数与SST k-ω湍流模型实现流固耦合,探究附有不同椭圆度Savonius叶轮结构的圆柱体流致旋转及振动响应,揭示结构流致旋转与涡激振动耦合作用机理。研究结果表明:叶轮结构的椭圆度是影响圆柱体横流向位移的关键,对于椭圆度相同的圆柱体,投影面积是影响顺流向位移的重要因素。低约化速度下,圆柱体不稳定旋转,形成非对称流动尾迹,表现出P+S尾迹模式。高约化速度下,圆柱体沿顺时针方向稳定旋转,旋转角速度大小呈现周期性波动。在同一旋转周期内,叶轮结构椭圆度越小,圆柱体瞬时扭矩系数绝对值越大。

Abstract

A novel cylindrical energy conversion device with Savonius impeller structure is simulated, incorporating user-defined functions and the SST k-ω turbulence model to achieve fluid-structure coupling. Investigating the flow rotation and vibration response of the cylinder with Savonius impeller structure of different ellipticities. Revealing the mechanism of coupling between flow rotation and vortex-induced vibration. The results show that the impeller structure ellipticity is the key to influence the transverse flow displacement of the cylinder. For cylinders with the same ellipticity, the projected area is an important factor affecting the downstream displacement. At low reduction velocities, the cylinder rotates unsteadily, forming an asymmetric flow wake, showing a P+S wake pattern. At high reduction velocities, the cylinder rotates steadily in the clockwise direction. The rotational angular velocity fluctuates periodically. In the same rotation period, cylinders with smaller impeller structure ellipticities exhibit larger absolute values of the cylinder's instantaneous torque coefficient.

关键词

流致旋转 / 涡激振动 / Savonius叶轮 / 椭圆度

Key words

flow-induced rotate / vortex-induced vibration / Savonius impeller / ellipticity

引用本文

导出引用
刘馨涵1,娄敏1,王宇1,李想2. 附有Savonius叶轮结构的圆柱体流致旋转耦合涡激振动数值研究[J]. 振动与冲击, 2024, 43(10): 98-105
LIU Xinhan1,LOU Min1,WANG Yu1,LI Xiang2. Numerical study on the flow-induced rotation coupled with vortex-induced vibration of a cylinder with Savonius impeller structure[J]. Journal of Vibration and Shock, 2024, 43(10): 98-105

参考文献

[1] ZHANG B S, SONG B W, MAO Z Y, et, al. A novel wake energy reuse method to optimize the layout for Savonius-type vertical axis wind turbines[J]. Energy, 2017, 121: 341–355. [2] 唐 涛,朱红钧,周新宇,等. 圆柱-分离盘结构的流致旋摆响应数值研究[J]. 空气动力学学报,2022,40:1-9. TANG Tao, ZHU Hongjun, ZHOU Xinyu, et, al. Numerical study on flow-induced rotation of a circular cylinder-splitter plate body at low Reynolds numbers[J]. Acta Aerodynamica Sinica, 2022, 40: 1-9. [3] WANG J L, GENG L F, DING L, et al. The state-of-the-art review on energy harvesting from flow-induced vibrations[J]. Applied Energy, 2020, 267: 114902. [4] 熊友明,张壮壮,高 云,等. 表面粗糙度对近壁圆柱体涡激振动响应影响的数值研究[J]. 振动与冲击,2021,40(20):108-116+134. XIONG Youming, ZHANG Zhuangzhuang, GAO Yun, et, al. Numerical study of the effects of surface roughness on vortex-induced vibration response of a circular cylinder near a plane wall[J]. Journal of Vibration and Shock, 2021, 40(20): 108-116+134. [5] 李 朋,王 来,郭海燕,等. 基于FBG传感技术的深海立管涡激振动测试研究[J]. 振动、测试与诊断,2016,36(04):756-763+814. LI Peng, WANG Lai, GUO Haiyan, et al. Testing of vortex-Induced vibrations of deep-sea risers based on FBG sensing technology[J]. Journal of Vibration, Measurement & Diagnosis, 2016, 36(04): 756-763+814. [6] 马文勇,刘剑寒,张晓斌,等. 旋转圆柱气动特性的雷诺数效应研究[J]. 振动与冲击,2022,41(07):46-52. MA Wenyong, LIU Jianhan, ZHANG Xiaobin, et al. Reynolds number effect on aerodynamic characteristics of a rotating circular cylinder[J]. Journal of Vibration and Shock, 2022, 41(07): 46-52. [7] ROY S, DUCOIN A. Unsteady analysis on the instantaneous forces and moment arms acting on a novel Savonius-type wind turbine[J]. Energy Conversion and Management, 2016, 121: 281–296. [8] TALUKDAR P K, SARDAR A, KULKARNI V, et al. Parametric analysis of model Savonius hydrokinetic turbines through experimental and computational investigations[J]. Energy Conversion and Management, 2018, 158: 36-49. [9] 王 伟,宋保维,毛昭勇,等. Savonius风机叶轮双侧外形优化设计[J]. 哈尔滨工程大学学报,2019,40(2):254-259+272. WANG Wei, SONG Baowei, MAO Zhaoyong, et al. Optimization of Savonius wind turbine impeller with bilateral contour[J]. Journal of Harbin Engineering University, 2019, 40(2): 254-259+272. [10] DING L, ZHANG L, BERNITSAS M M, et al. Numerical simulation and experimental validation for energy harvesting of single-cylinder VIVACE converter with passive turbulence control[J]. Renewable Energy, 2016, 85: 1246-1259. [11] 孙宏军,吕鹏飞,丁红兵,等. 带状附加物放置角度对流致振动与振子俘能特性影响研究[J]. 振动与冲击,2023,42(06):98-105. SUN Hongjun, LV Pengfei, DING Hongbing, et, al. Experimental study on the influence of the placement angles of strip attachments on the flow induced vibration of a cantilever vibrator and the energy harvesting characteristics[J]. Journal of Vibration and Shock, 2023, 42(06): 98-105. [12] DING L, YANG L, YANG Z M, et al. Performance improvement of aeroelastic energy harvesters with two symmetrical fin-shaped rods[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2020, 196: 104051. [13] WILLIAMSON C H K, GOVARDHAN R. A brief review of recent results in vortex-induced vibrations[J]. Journal of Wind Engineering Industrial Aerodynamics, 2008, 96: 713–735. [14] SUN H, KIM E S, NOWAKOWSKI G, et, al. Effect of mass-ratio, damping, and stiffness on optimal hydrokinetic energy conversion of a single, rough cylinder in flow induced motions[J]. Renew Energy, 2016, 99: 936-959. [15] LEI K, SUN Z Q. A semicircular wall for harvesting wind energy from vortex-induced vibration and galloping[J]. Ocean Engineering, 2023, 280: 114896. [16] WANG J L, ZHOU S X, ZHANG Z E, et, al. High-performance piezoelectric wind energy harvester with Y-shaped attachment[J]. Energy Conversion and Management, 2019, 181: 645-652. [17] LAUNDER B E, SPALDING D B. The numerical computation of turbulent flow[J]. Computer Methods in Applied Mechanics and Engineering, 1974, 3: 269-289. [18] BAO Y, HUANG C, ZHOU D, et al. Two-degree-of-freedom flow-induced vibrations on isolated and tandem cylinders with varying natural frequency ratios[J]. Journal of Fluids and Structures, 2012, 35: 50-75. [19] MENTER F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal, 1994, 32(8): 1598-1605. [20] ZHU H J, LIAO Z H, GAO Y, et, al. Numerical evaluation of the suppression effect of a free-to-rotate triangular fairing on the vortex-induced vibration of a circular cylinder[J]. Applied Mathematical Modelling, 2017, 52: 709-730. [21] ASSI G R S, BEARMAN P W, TOGNARELLI M A. On the stability of a free-to-rotate short-tail fairing and a splitter plate as suppressors of vortex-induced vibration[J]. Ocean Engineering, 2014, 92: 234-244. [22] PRASANTH T K, BEHARA S, SINGH S P, et al. [J]. Journal of Fluids & Structures, 2006, 22(6-7): 865-876. [23] LIAO W L, HUANG Z J, SUN H, et, al. Numerical investigation of cylinder vortex-induced vibration with downstream plate for vibration suppression and energy harvesting[J]. Energy, 2023, 281: 128264. [24] 张世奇. 基于CFD波流条件下Savonius桨叶的形状优化研究[D]. 哈尔滨工程大学,2019. ZHANG Shiqi. Research on the Optimization Analysis of a Savonius Rotor Under the Wave-Current Condition Based on CFD[D]. Harbin Engineering University, 2019. [25] ZHU H J, ZHAO H N, YAO J, et, al. Numerical study on vortex-induced vibration responses of a circular cylinder attached by a free-to-rotate dartlike overlay[J]. Ocean Engineering, 2016, 112: 195-210.

PDF(1944 KB)

Accesses

Citation

Detail

段落导航
相关文章

/