碳纤维圆管增强超弹多孔结构振动特性研究

樊永乐1,2,杨金水,2,李爽1,2,刘彦佐1

振动与冲击 ›› 2024, Vol. 43 ›› Issue (11) : 111-117.

PDF(2070 KB)
PDF(2070 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (11) : 111-117.
论文

碳纤维圆管增强超弹多孔结构振动特性研究

  • 樊永乐1,2,杨金水,2,李爽 1,2,刘彦佐1
作者信息 +

Vibration characteristics of carbon fiber circular tube reinforced super-elastic porous structure

  • FAN Yongle1,2, YANG Jinshui1,2, LI Shuang1,2, LIU Yanzuo1
Author information +
文章历史 +

摘要

随着船舶工业技术的快速发展,对动力系统隔振装置提出了更加苛刻的要求,现有的橡胶阻尼材料虽然具备良好的减振效果,但仍然存在着质量大、力学承载性能和吸能性能不足等问题,针对上述背景,本文将橡胶阻尼材料与力学性能优异的碳纤维圆管相结合设计出了一种兼具轻质、抗冲、隔振的碳纤维圆管增强超弹多孔结构,并在前期的研究中已验证了该结构具有优异的抗冲吸能表现。在此基础上,通过试验结合数值表征的方法研究了该结构的振动行为和减振性能,揭示碳纤维圆管对结构固有振动特性和减振性能的影响规律。结果发现,相比无增强结构,填充碳纤维圆管的超弹多孔结构可在增强结构整体刚度的同时实现减振性能的显著提升;试验结果验证了所建立结构数值模型的可靠性,对比不同增强结构的仿真与试验发现随着碳纤维圆管厚度的增加,结构固有频率呈现先增大后减小的趋势;研究结果可为设计新型轻质高刚度高阻尼结构提供参考。

Abstract

With the rapid development of shipbuilding industry technology, the power system vibration isolation device put forward more stringent requirements, although the existing rubber damping material has a good vibration damping effect, but there are still problems such as large mass, mechanical bearing performance and insufficient energy absorption performance, in view of the background of the appeal, this paper combines rubber damping material with excellent mechanical properties of carbon fiber round tube to design a carbon fiber round tube reinforced super-elastic porous structure with both light weight, impact resistance and vibration isolation. In previous studies, it has been verified that the structure has excellent impact absorption performance. On this basis, the vibration behavior and damping performance of the structure are studied by experimental and numerical characterization, and the influence of carbon fiber round tube on the inherent vibration characteristics and damping performance of the structure is revealed. The results show that compared with the unreinforced structure, the super-elastic porous structure filled with carbon fiber round tube can significantly improve the vibration damping performance while enhancing the overall stiffness of the structure. The experimental results verify the reliability of the established numerical model of the structure, and compare the simulation and test of different reinforced structures and show that with the increase of the thickness of the carbon fiber round tube, the natural frequency of the structure first increases and then decreases. The research results can provide a reference for the design of new lightweight, high-stiffness and high-damping structures.

关键词

多孔结构 / 碳纤维圆管 / 聚氨酯 / 振动 / 阻尼

Key words

porous structure / carbon fiber round tube / polyurethane / vibration / damping

引用本文

导出引用
樊永乐1,2,杨金水,2,李爽1,2,刘彦佐1 . 碳纤维圆管增强超弹多孔结构振动特性研究[J]. 振动与冲击, 2024, 43(11): 111-117
FAN Yongle1,2, YANG Jinshui1,2, LI Shuang1,2, LIU Yanzuo1. Vibration characteristics of carbon fiber circular tube reinforced super-elastic porous structure[J]. Journal of Vibration and Shock, 2024, 43(11): 111-117

参考文献

[1] 高峰. 欧洲国家海军潜艇减振降噪技术发展展望[J]. 舰船科学技术, 2015, 37(10): 160-164. Gao F. Development prospect on the vibration isolation and noise reduction technology of submarine in European countries[J]. Ship Science and Technology, 2015, 37(10): 160-164. [2] 古龙,闵捷. 船舶振动噪声控制技术的现状与发展[J]. 舰船科学技术, 2019, 041(012): 1-5. Gu L, Min J. Review of vibration and noise control technology for submarines[J]. Ship Science and Technology, 2019, 041(012): 1-5. [3] 何琳,徐伟. 舰船隔振装置技术及其进展[J]. 声学学报, 2013, 38(2): 128-136. He L, Xu W. Naval vessel machinery mounting technology and its recent advances[J]. Acta Acustica, 2013, 38(2): 128-136. [4] 朱石坚,何琳. 船舶机械振动控制[M]. 国防工业出版社, 2006. Zhu S J, He L. Vibration control of onboard machinery[M]. National Defense Industry Press, 2006. [5] 朱威,朱金华,文庆珍. 聚氨酯阻尼材料研究及在舰船领域的应用[J].材料开发与应用,2014,29(05):97-103. Zhu W, Zhu J H, Wen Q Z. The Research Progress of Polyurethane Damping Materials[J].Development and Application of Materials, 2014,29(05):97-103. [6] 谢昊圃. 高性能自修复聚氨酯的制备及性能研究[D]. 中国科学技术大学,2022. Xie H P. Studies on Preparation and Performance of High-performance Self-healing Polyurethane[D].University of Science and Technology of China,2022. [7] 张武昆,谭永华,高玉闪,等.周期性轻质多孔结构在能量吸收和振动方面的研究进展[J].振动与冲击,2023,42(08):1-19. Zhang W K, Tan Y H, Gao Y S, et al. Research progress on energy absorption properties and vibration of periodic lightweight porous structures[J].Journal of Vibration and Shock,2023,42(08):1-19. [8] 吴林志,熊健,马力,等.新型复合材料点阵结构的研究进展[J]. 力学进展, 2012, 42(1): 41-67. Wu L Z, Xiong J, Ma L, et al. Processes in the study on novel composite sandwich panels with lattice truss cores[J].Advances in Mechanics, 2012, 42(1): 41-67. [9] Lasowicz N, Kwiecień A, Jankowski R. Experimental study on the effectiveness of polyurethane flexible adhesive in reduction of structural vibrations[J]. Polymers, 2020, 12(10): 2364. [10] Liang L Q, Huang W, Lyu P, et al. Impacts of PU foam stand-Off layer on the vibration damping performance of stand-off free layer damping cantilever beams[J]. Shock and Vibration, 2020: 1-13. [11] Xiong Z, Liu J, Wang P, et al. Field dynamic performance testing and analysis of polyurethane track and ballasted track in a high-speed railway[J]. Journal of Civil Structural Health Monitoring, 2021, 11(4): 867-877. [12] 赵长银. 泡沫铝-聚氨酯复合材料减振降噪性能试验研究[D].东南大学,2017. Zhao C Y. Experiment study on the vibration damping and noise reduction performance of aluminum foam-polyurethane composites[D]. Southeast University,2017. [13] 邹美帅,李晓东,张旭东,等.高减振降噪微孔聚氨酯弹性体研究[J].中国环保产业,2022(06):69-72. Zou M S, Li X D, Zhang X D, et al. Research on Microporous Polyurethane for Efficient Vibration and Noise Reduction[J]. China Environmental Protection Industry, 2022(06):69-72. [14] 马力,杨金水.新型轻质复合材料夹芯结构振动阻尼性能研究进展[J].应用数学和力学,2017,38(04):369-398. Ma L, Yang J S. Progresses in the study on vibration damping properties of novel lightweight composite sandwich structures[J]. Applied Mathematics and Mechanics,2017,38(4) : 369-398. [15] Yang J, Xiong J, Ma L, et al. Vibration and damping characteristics of hybrid carbon fiber composite pyramidal truss sandwich panels with viscoelastic layers[J]. Composite Structures, 2013, 106: 570-580. [16] 李爽,杨金水,吴林志,等.边界和杆件倾角对沙漏点阵结构振动特性的影响[J].哈尔滨工程大学学报,2019,40(5): 878-885. Li S, Yang J S, Wu L Z, et al. Influence of boundary conditions and truss inclination angles on vibration characteristics of the hourglass lattice structure[J].Journal of Harbin Engineering University,2019,40(5) : 878-885. [17] Hufenbach W, Holste C, Kroll L. Vibration and damping behaviour of multi-layered composite cylindrical shells[J]. Compos Struct 2002,58:165-174. [18] Zhang H, Sun FF, Fan HL, et al. Free vibration behaviors of carbon fiber reinforced lattice-core sandwich cylinder[J]. Compos Sci Tecnol 2014,100:26-33. [19] Kim C J. Sensitivity of the viscous damping coefficient of carbon fiber in carbon-fiber-reinforced plastic with respect to the fiber angle[J]. Crystals, 2021, 11(7): 781. [20] 陆姗姗,盛美萍,任杰安. 格栅夹层板抑振性能研究[J]. 动力学与控制学报, 2012, 10(2): 157-161. Lu S S, Sheng M P, Ren J A. Vibration suppression performance research of sandwich plate with lattice grids[J]. Journal of Dynamics and Control,2012, 10(2): 157-161. [21] Yang J S, Ma L, Schmidt R, et al.Hybrid lightweight composite pyramidal truss sandwich panels with high damping and stiffness efficiency[J]. Composite Structures,2016,148: 85-96. [22] Liu Y Z, Li S, Lin X, et al. Dynamic response of composite tube reinforced porous polyurethane structures under underwater blast loading[J]. International Journal of Impact Engineering, 2023, 173: 104483. [23] 何立平. 基于DMA方法的橡胶沥青粘弹特性和高温性能研究[D].长安大学,2014. He L P. Reserch on the viscoelastic characteritistic and high temperature properties based DMA of rubber asphalt[D]. Chang’an University,2014. [24] Yang J S, Chen S Y, L Xu C, et al. Dynamic crushing behavior of multi-layered hybrid foam-filled composite graded lattice sandwich panels[J]. Mechanics of Advanced Materials and Structures,2022,29(27): 6694-6704.

PDF(2070 KB)

287

Accesses

0

Citation

Detail

段落导航
相关文章

/