为提升大跨度铁路悬索桥的横向刚度,提出一种由主、副斜拉索组成的复合空间索结构。然后,基于材料有效利用率和静力分析,对复合空间索的直径、主斜拉索在加劲梁和地表的锚点位置、副斜拉索的数量等参数进行了优化。最后,采用风-车-桥耦合振动分析法,基于行车性能得到了桥梁横向挠跨比限值,分析了主、副斜拉索对横向挠跨比限值提升率的影响。结果表明:基于材料有效利用率,主斜拉索与加劲梁的锚点位置宜设在1/4主跨附近,且主斜拉索的地表锚点、加劲梁锚点与桥塔的垂直距离相等时最优,每组复合空间索中副斜拉索设置1根即可;在复合空间索的最优布置形式下,桥梁横向挠跨比可降低14.18%,横向挠跨比限值可提升16.79%。
Abstract
To enhance transverse stiffness of a long-span railway suspension bridge, a composite-spatial cable structure consisting of main and secondary diagonal cables is proposed. Then, the parameters of diameter of composite-spatial cables, anchorages of main diagonal cables with stiffening beams and the surface, and the number of secondary diagonal cables on transverse deflection-span ratio of the bridge are optimized by the effective utilization of the materials and static analysis method. Finally, the analysis method for coupling vibrations of wind-vehicle-bridge system is used to obtain the limit of transverse deflection-span ratio of the bridge based on the driving performance, and the influence of the main and secondary diagonal cables on the enhancement rate of the limit of transverse deflection-span ratio is analyzed. The results show that on the basis of considering the effective utilization rate of composite-spatial cables, anchorages of main diagonal cables and stiffened beams should be located near 1/4 of the main span, and it is optimal when the vertical distance between anchorages of main diagonal cables with stiffening beams and the surface and the tower is equal, and it is enough to set a secondary diagonal cable for each group of composite-spatial cables; in the optimal layout of composite-spatial cables, transverse deflection-span ratio of the bridge can be reduced by 14.18%, the limit of transverse deflection-span ratio can be increased by 16.79%.
关键词
复合空间索 /
铁路悬索桥 /
风-车-桥系统 /
横向挠跨比 /
横向挠跨比限值
{{custom_keyword}} /
Key words
composite-spatial cable /
railway suspension bridge /
wind-vehicle-bridge system /
transverse deflection-span ratio /
the limit of transverse deflection-span ratio
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] ZHAO Kaiyong, WANG Hao, TAO Tianyou, et al. Parametric analysis on buffeting performance of a long-span high-speed railway suspension bridge [J]. Journal of Central South University,2022,29(08):2574-2588.
[2] 郭薇薇,夏禾,徐幼麟.风荷载作用下大跨度悬索桥的动力响应及列车运行安全分析[J].工程力学,2006(02):103-110.
GUO Weiwei, XIA He, XU Youlin. Dynamic response of long span suspension bridge and running safety of train under wind acion [J]. Engineering Mechanics, 2006(2): 103-110.
[3] 郑凯锋,强士中,唐继舜.大跨悬索桥的若干发展趋势[C].中国土木工程学会桥梁及结构工程学会.中国土木工程学会桥梁及结构工程学会第11届年会论文集.北京:人民交通出版社,1994:142-153.
ZHENG Kaifeng, QIANG Shizhong, TANG Jishun. Some development trends of long-span suspension bridges [C]. Bridge and Structural Engineering Society of China Civil Engineering Society. Proceedings of the 11th Annual Meeting of Bridge and Structural Engineering Society of China Civil Engineering Society. Beijing: China Communications Press,1994:142-153.
[4] 王晓明,郝宪武,石雪飞,等.特大跨悬索桥的缆索体系优化[J].昆明理工大学学报(理工版),2008,33(06):55-60.
WANG Xiaoming, HAO Xianwu, SHI Xuefei, et al. The large span suspension bridge cable system optimization [J]. Journal of Kunming University of Science and Technology: Technology, 2008, 33(06):55-60.
[5] 张东.大跨度铁路悬索桥结构体系及对刚度影响的研究[D].西南交通大学,2011.
ZHANG Dong. Research on structure system of long-span railway suspension bridge and the influence to the stiffness[D]. Chengdu: Southwest Jiaotong University, 2011.
[6] 李永乐,蔡宪棠,安伟胜,等.大跨度铁路悬索桥结构刚度敏感性研究[J].中国铁道科学,2011,32(04):24-30.
LI Yongle, CAI Xiantang, AN Weisheng, et al. Study on the sensitivity of the structural stiffness of long-span railway suspension bridge [J]. China Railway Science, 2011, 32(04): 24-30.
[7] 陈进昌,雷俊卿,金令,等.千米级大跨公铁两用悬索桥结构特性及刚度指标研究[J].铁道标准设计,2022,66(06):54-61.
CHEN Jinchang, LEI Junqing, JIN Ling, et al. Study on structure characteristics and stiffness indexes of thousand-meter-scale road-rail suspension bridges [J]. Railway Standard Design, 2022, 66 ( 6 ):54-61
[8] 王晨阳.高烈度山区千米级铁路悬索桥刚度及桥塔抗震研究[D].西南交通大学,2021.
WANG Chenyang. Research on stiffness and seismic behavior of bridge tower of 1000-meter railway suspension bridge in high intensity mountain area [D]. Chengdu: Southwest Jiaotong University, 2021.
[9] 祝志文,姜子涵.加劲梁带外伸跨的大跨度悬索桥动力特性分析[J].铁道科学与工程学报,2022,19(04):1014-1023.
ZHU Zhiwen, JIANG Zihan. Analysis of dynamic characteristics of large-span suspension bridges with extended spans of stiffening girders [J]. Journal of Railway Science and Engineering, 2022, 19 ( 4): 1024-1031.
[10] 刘建瑞,沈平.铁路桥梁设计横向刚度指标限值的研究[J].铁道标准设计,2006(12):23-25.
LIU Jianrui, SHEN Ping. Research on the limit of transverse stiffness index of railway bridge design [J]. Railway Standard Design, 2006(12): 23-25.
[11] 柏华军,文望青,许三平.基于刚度变形要求的高速铁路桥梁设计研究[J].世界桥梁,2020,48(S1):27-33.
BO Huajun, WEN Wangqing, XU Sanping. High speed railway bridge design based on stiffness and deformation requirements [J].World Bridges, 2020, 48(S1): 27.
[12] 赵会东,陈良江.基于行车性能的大跨度高速铁路桥梁横向刚度控制指标研究[J].铁道建筑,2017,57(12):1-4.
ZHAO Huidong, CHEN Liangjiang. Research on limit values for lateral stiffness control of long span high speed railway bridges based on train operation performance [J]. Railway Engineering, 2017, 57(12): 1-4.
[13] 李永乐,龙俊廷,向活跃,等.基于风-车-桥的城市轨道交通桥横向挠跨比建议值研究[J].振动与冲击,2020,39(24):211-217.
LI Yongle, LONG Junting, XIANG Huoyue, et al. Transverse deflection-span ratio suggested value of an urban rail transit bridge based on a wind-vehicle-bridge system [J]. Journal of Vibration and Shock, 2020, 39(24): 211-217.
[14] 向活跃,陶宇,陈绪黎,等.考虑风屏障影响的大跨度铁路悬索桥横向挠跨比限值研究[J].铁道学报,2023,45(03):62-69.
XIANG Huoyue, TAO Yu, CHEN Xuli, et al. Study on transverse deflection-span ratio limit of long-span railway suspension bridge considering wind barrier [J]. Journal of the China Railway Society, 2023, 45(03): 62-69.
[15] 柯红军,李传习.基于ANSYS的自锚式悬索桥有限元建模和分析方法[J].交通与计算机,2008(05):131-135+138.
KE Hongjun. LI Chuanxi. ANSYS-based self-anchored suspension bridge finite element modeling and analytic method [J]. Computer and Communications, 2008(5) : 131-135.
[16] 国家铁路局.铁路桥涵设计规范:TB 10002-2017[S].北京:中国铁道出版社,2017.
National Railway Administration. Code for design of railway bridges and culverts: TB 10002-2017 [S]. Beijing: China Railway Publishing House, 2017.
[17] 中华人民共和国交通运输部.公路悬索桥设计规范:JTG/T D65-05-2015[S].北京:人民交通出版社股份有限公司,2015.
Ministry of Transport of the People's Republic of China. Specifications for design of highway suspension bridge: JTG/T D65-05-2015 [S]. Beijing: China Communications Press,2015.
[18] 中国铁路总公司.铁路技术管理规程(高速铁路部分):TG/01-2014[S].北京:中国铁道出版社,2014.
China Railway. Technical management regulations for railway (high-speed railway) :TG/01-2014[S]. Beijing: China Railway Publishing House,2014.
[19] 中华人民共和国交通运输部.公路桥梁抗风设计规范:JTG/T 3360-01-2018[S]. 北京:人民交通出版社股份有限公司,2018.
Ministry of Transport of the People's Republic of China. Wind-resistant design specification for highway bridges: JTG/T 3360-01-2018 [S]. Beijing: China Communications Press, 2018.
[20] 李永乐.风-车-桥系统非线性空间耦合振动研究[D].成都:西南交通大学,2003.
LI Yongle. Nonlinear three-dimensional coupling vibration of wind-vehicle-bridge system [D]. Chengdu: Southwest Jia-otong University, 2003.
[21] 中华人民共和国交通运输部.大跨度斜拉桥平行钢丝拉索:JT/T 775-2016[S].北京:人民交通出版社股份有限公司,2016.
Ministry of Transport of the People's Republic of China. Cable of parallel steel wires for large-span cable-stayed bridge: JT/T 775-2016 [S]. Beijing: China Communications Press, 2016.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}