高温后水泥砂浆-花岗岩复合层动态力学性能试验研究

顾琳琳1,尹克飞1,王振2,吴汩3,何鹏涛2

振动与冲击 ›› 2024, Vol. 43 ›› Issue (11) : 176-184.

PDF(3186 KB)
PDF(3186 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (11) : 176-184.
论文

高温后水泥砂浆-花岗岩复合层动态力学性能试验研究

  • 顾琳琳1,尹克飞1,王振2,吴汩3,何鹏涛2
作者信息 +

Test study on dynamic mechanical properties of cement mortar-granitecomposite layer after high temperature

  • GU Linlin1, YIN Kefei1, WANG Zhen2, WU Gu3, HE Pengtao2
Author information +
文章历史 +

摘要

为研究高温后水泥砂浆-花岗岩复合层的动态力学特性,采用分离式霍普金森压杆(SHPB)设备,以温度和加载速率为可变参数,开展了复合层试件动态压缩试验及静压对比试验。结果表明:动态抗压强度和动态强度增长因子(DIF)均有显著的应变率效应,应变率低于45s-1时DIF随温度升高单调减小,高于45s-1后DIF随温度升高先减小后增大;高温后复合层界面粘结减弱,随着温度升高水泥砂浆和花岗岩破坏形态差异化增大;复合层试件削波耗能特性表现出加载速率低敏感和温度高敏感。峰值应力比和耗能率不随加载速率的改变而发生明显变化,高温后复合层等效波阻抗下降,削波能力得到增强而耗能效果受到削弱;随着温度升高,入射能更多地转化为反射能,透射能及破坏耗能的占比下降。

Abstract

In order to study the dynamic mechanical characteristics of cement mortar-granite composite layer after high temperature, the dynamic compression test and static pressure comparison test of composite layer specimens were carried out using the split Hopkinson pressure bar (SHPB) equipment, taking temperature and loading rate as variable parameters. The results show that: both dynamic compressive strength and dynamic strength growth factor (DIF) has significant strain rate effect. When the strain rate is lower than 45s-1, DIF decreases monotonically with temperature increaseing, while DIF decreases and then increases with temperature increasing when strain rate higher than 45s-1. After the high temperature, the interface bonding of the composite layer weakens, and the differentiation of failure morphology of cement mortar and granite increases with temperature rising. The clipping energy dissipation characteristics of the composite layer specimen shows low sensitivity to loading rate and high sensitivity to temperature. The peak stress ratio and energy dissipation rate do not change significantly with the change of loading rate. As high temperature reduces the equivalent wave impedance of the composite layer, the clipping ability is enhanced and the energy consumption effect is weakened. As the temperature increases, more incident energy is converted into reflection energy, the proportion of transmission energy and destruction energy decrease.

关键词

SHPB / 复合层 / 高温 / 冲击荷载 / 动态力学性能

Key words

SHPB / composite layer / high temperature / impact loads / dynamic mechanical properties

引用本文

导出引用
顾琳琳1,尹克飞1,王振2,吴汩3,何鹏涛2. 高温后水泥砂浆-花岗岩复合层动态力学性能试验研究[J]. 振动与冲击, 2024, 43(11): 176-184
GU Linlin1, YIN Kefei1, WANG Zhen2, WU Gu3, HE Pengtao2. Test study on dynamic mechanical properties of cement mortar-granitecomposite layer after high temperature[J]. Journal of Vibration and Shock, 2024, 43(11): 176-184

参考文献

[1] 赵洪宝,吉东亮,刘绍强,等. 冲击荷载下复合岩体动力响应力学特性及本构模型研究[J]. 岩石力学与工程学报,2023, 42(01): 88-99. ZHAO Hong-bao, JI Dong-liang, LIU Shao-qiang, et al. Study on dynamic response and constitutive model of composite rock under impact loading [J]. Chinese Journal of Rock Mechanics and Engineering, 2023, 42(01): 88-99. [2] 邹有纯,熊超,殷军辉,等. 层状复合结构的应力波传播规律及能量耗散机制研究[J]. 振动与冲击,2022, 41(15): 209-216. ZOU You-chun, XIONG Chao, YIN Jun-Hui, et al. Stress wave propagation law and energy dissipation mechanism of layered composite structure [J]. Journal of vibration and shock, 2022, 41(15): 209-216. [3] Ruishan Cheng, Wensu Chen, Hong Hao, et al. A state-of-the-art review of road tunnel subjected to blast loads [J]. Tunnelling and Underground Space Technology, 2021, 112: 103911. [4] 王建国,高全臣,陆华,等. 分层介质冲击响应的SHPB实验研究[J]. 振动与冲击,2015, 34(19): 192-197+212. WANG Jan-Guo, GAO Quan-Chen, LU Hua, et al. Impact response tests of layered medium with SHPB [J]. Journal of vibration and shock, 2015, 34(19): 192-197+212. [5] 杨仁树,李炜煜,方士正,等. 层状复合岩体冲击动力学特性试验研究[J]. 岩石力学与工程学报,2019, 38(09): 1747-1757. YANG Ren-shu, LI Wei-yu, FANG Shi-zheng, et al. Experimental study on impact dynamic characteristics of layered composite rocks [J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(09): 1747-1757. [6] Zhenyu Han, Diyuan Li, Xibing Li, Dynamic mechanical properties and wave propagation of composite rock-mortar specimens based on SHPB tests [J]. International Journal of Mining Science and Technology, 2022, 32(04): 793-806. [7] P.L.N. Fernando, Damith Mohotti, Alex Remennikov, et al. Experimental, numerical and analytical study on the shock wave propagation through impedance-graded multi-metallic systems [J]. International Journal of Mechanical Sciences, 2020, 178: 105621. [8] Tengjiao Wang, Jinyu Xu, Erlei Bai, et al. Coupling effects of axial static pressure ratio and high temperature on dynamic mechanical properties and crushing fractal characteristics of concrete under static-dynamic coupled loads [J]. Journal of Building Engineering, 2022, 59: 105114. [9] 王宇涛,刘殿书,李胜林,等. 高温后混凝土静动态力学性能试验研究[J].振动与冲击,2014, 33(20): 16-19+39. WANG Yu-tao, LIU Dian-shu, LI Sheng-lin, et al. Static and dynamic mechanical properties of concrete after high temperature treatment [J]. Journal of vibration and shock, 2014,33 (20): 16-19+39. [10] 支乐鹏,许金余,刘志群,等. 高温后花岗岩冲击破坏行为及波动特性研究[J]. 岩石力学与工程学报,2013, 32(01): 135-142. ZHI Le-peng, XU Jin-yu, LIU Zhi-qun, et al. Research on impacting failure behavior and fluctuation characteristics of granite exposed to high temperature [J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(01): 135-142. [11] 黄耀莹,屈璐,李宇白,等. 实时高温作用下花岗岩冲击压缩力学特性研究[J]. 爆炸与冲击,2023, 43(02): 62-75. HUANG Yao-yin, QU Lu, LI Yu-bai, et al. Mechanical properties of granite under impact compression after real-time high temperature [J]. Explosion and Shock Waves, 2023, 43(02): 62-75. [12] Bischoff P H, Perry S H. Compressive behaviour of concrete at high strain rates [J]. Materials and Structures, 1991, 24(4): 425―450. [13] 陈为农,宋博. 分离式霍普金森(考尔斯基)杆设计、试验和应用[M]. 姜锡权,卢玉斌. 北京:国防工业出版社,2018: 50-53. Chen W, Song B. Split Hopkinson(Kolsky)Bar Design, Testing and Applications [M]. JIANG Xi-Quan, LU Yu-Bin. Beijing: National Defence Industry Press, 2018: 50-53. [14] 李卫,过镇海. 高温下砼的强度和变形性能试验研究[J].建筑结构学报,1993, 14(01): 8-16. LI Wei, GUO Zhen-Hai. Experimental study on strength and deformation properties of concrete at high temperature [J]. Journal of Building Structures, 1993, 14(01): 8-16. [15] Rui Zhe, Wei Zhou. Study of dynamic mechanical properties of UHPC-AAC composites based on SHPB test [J]. Journal of Building Engineering, 2023, 78: 107668. [16] 陈猛,王浩,齐迈,等. 岩石–钢纤维混凝土复合层动态压缩性能试验研究[J]. 岩石力学与工程学报,2020, 39(06): 1222-1230. CHEN Meng, WANG Hao, QI Mai, et al. Experimental study on dynamic compressive properties of composite layers of rock and steel fiber reinforced concrete [J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(06): 1222-1230. [17] 彭帅,李亮,吴俊,等. 高温条件下钢纤维混凝土动态抗压性能试验研究[J]. 振动与冲击,2019, 38(22): 149-154. PENG Shuai, LI Liang, WU Jun, et al.Impact tests on dynamic compressive behaviors of steel fiber reinforced concrete at elevated temperature [J]. Journal of vibration and shock, 2019, 38(22): 149-154. [18] N. Ferguen, W. Leclerc, E.-S. Lamini, Numerical investigation of thermal stresses induced interface delamination in plasma-sprayed thermal barrier coatings, Surface and Coatings Technology [J]. 2023, 461: 129449 [19] HE Ming, YU Li-Yuan, LIU Ri-Cheng, et al. Experimental investigation on mechanical behaviors of granites after high-temperature exposure [J]. Journal of Central South University, 2022, 29(4): 1332-1344. [20] Song B, Chen W. Energy for Specimen Deformation in a Split Hopkinson Pressure Bar Experiment [J]. Experimental Mechanics 2006, 46: 407–410. [21] 孟庆山,范超,曾卫星,等. 南沙群岛珊瑚礁灰岩的动态力学性能试验[J]. 岩土力学,2019, 40(01): 183-190. MENG Qin-Shan, FAN Chao, ZENG Wei-Xing, et al. Tests on dynamic properties of coral-reef limestone in South China Sea [J]. Rock and Soil Mechanics, 2019, 40(01): 183-190.

PDF(3186 KB)

Accesses

Citation

Detail

段落导航
相关文章

/