考虑宏观结构性能的多材料微结构拓扑优化设计

张磊1,2,倪绍豪1,2,蒋国璋1,2,3,张严1,2,3,宫逸文1,2

振动与冲击 ›› 2024, Vol. 43 ›› Issue (11) : 185-193.

PDF(1740 KB)
PDF(1740 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (11) : 185-193.
论文

考虑宏观结构性能的多材料微结构拓扑优化设计

  • 张磊1,2,倪绍豪1,2,蒋国璋1,2,3,张严1,2,3,宫逸文1,2
作者信息 +

Multi-material microstructure topology optimization design considering macroscopic structural performance

  • ZHANG Lei1,2, NI Shaohao1,2, JIANG Guozhang1,2,3, ZHANG Yan1,2,3, GONG Yiwen1,2
Author information +
文章历史 +

摘要

多孔微结构材料以其质量轻、比刚度/比强度高、抗冲击等优异力学性能,被广泛应用于航空航天等工程领域。相比单一材料设计,多材料设计可获得力学性能更优的微结构拓扑构型。拓扑优化是实现多材料布局设计的有效方法之一。本文通过构建基于差集的多材料水平集描述模型和交替活动相算法,提出了基于参数化水平集的的多材料微结构拓扑优化设计方法。首先,构建了基于差集的多材料水平集描述模型,利用N个水平集函数实现N+1相材料拓扑的精确描述。然后,引入交替活动相算法,将原始N+1相多材料优化问题分解为N(N+1)/2个双相材料优化子问题,以减少设计变量与约束条件,提高计算效率。最后,采用均匀化方法计算多材料微结构的等效弹性张量,以宏观结构柔度最小化为优化目标,各相材料用量为约束条件,构建多材料微结构拓扑优化模型,并利用优化准则法实现上述优化模型的高效求解。数值算例结果表明,所提方法可有效实现多材料微结构的拓扑优化设计,所设计微结构均具有光滑的结构边界和清晰的材料界面。

Abstract

Porous microstructure materials are widely used in aerospace and other engineering fields due to their excellent mechanical properties, such as lightweight, high specific stiffness/strength, and impact resistance. Compared with conventional design with one single material, topological design with multiple materials can provide a microstructure with better mechanical properties. And topology optimization is one of the effective design methods for multi-material layouts. This paper proposes a parametric level set-based multi-material microstructural topology optimization method by combining a difference-set-based multi-material level set description model and an alternating active phase algorithm. In this method, firstly, a difference-set-based multi-material level set description model is constructed to accurately describe the topologies of N+1 phase materials only by using N level set functions. Then, an alternating active phase algorithm is employed to split the original N+1 phase multi-material optimization problem into N(N+1)/2 binary-phase sub-problems, so as to reduce design variables and constraint conditions for improving computational efficiency. Finally, a numerical homogenization method is used to calculate the effective elastic tensor of a multi-material microstructure. With the minimum macrostructural compliance as objective function, and the allowable material amount of each phase as constraint condition, a topology optimization model for the multi-material microstructure is constructed. The optimization criteria algorithm is used to numerally solve the above optimization model. The numerical results show that the proposed method can effectively achieve the topological design of multi-material microstructures, and the resulting microstructures have also smooth structural boundaries and distinct material interfaces.

关键词

拓扑优化 / 多材料微结构 / 水平集方法 / 均匀化方法 / 交替活动相算法

Key words

topology optimization / multi-material microstructure / level set method / homogenization method / alternating active-phase algorithm

引用本文

导出引用
张磊1,2,倪绍豪1,2,蒋国璋1,2,3,张严1,2,3,宫逸文1,2. 考虑宏观结构性能的多材料微结构拓扑优化设计[J]. 振动与冲击, 2024, 43(11): 185-193
ZHANG Lei1,2, NI Shaohao1,2, JIANG Guozhang1,2,3, ZHANG Yan1,2,3, GONG Yiwen1,2. Multi-material microstructure topology optimization design considering macroscopic structural performance[J]. Journal of Vibration and Shock, 2024, 43(11): 185-193

参考文献

[1] ANTON D P, RAZAVI S M J, BENEDETTI M, et al. Properties and applications of additively manufactured metallic cellular materials: a review[J]. Progress in Materials Science, 2021:100918. [2] 杜义贤, 李涵钊, 田启华, 等. 基于能量均匀化的高剪切强度周期性点阵结构拓扑优化[J]. 机械工程学报, 2017, 53(18):152-160. DU Yi-xian, LI Han-zhao, TIAN Qi-hua et al. Topology optimization of periodic lattice structure with high shear strength using energy-based homogenization[J]. Journal of mechanical engineering, 2017, 53(18): 152-160. [3] 蔡金虎, 王春洁. 基于映射的梯度点阵结构设计方法[J]. 振动与冲击, 2020, 39(20):74-81. CAI Jin-hu, WANG Chun-jie. A graded lattice structure design method based on mapping process[J]. Journal of vibration and shock, 2020, 39(20):74-81. [4] 赵志军, 荣见华, 黄方林, 等. 基于变频率区间约束的结构材料优化设计[J]. 振动与冲击, 2015, 34(2):101-106. ZHAO Zhi-jun, RONG Jian-hua, HUANG Fang-lin, et al. Optimization design of structural materials based on variable frequency interval constraints[J].Journal of vibration and shock, 2015, 34(2):101-106. [5] WANG Y, LUO Z, ZHANG N, et al. Topological shape optimization of microstructural metamaterials using a level set method[J]. Computational Materials Science, 2014, 87:178-186. [6] HUANG X, RADMAN A, XIE Y M. Topological design of microstructures of cellular materials for maximum bulk or shear modulus[J]. Computational Materials Science, 2011, 50(6):1861-1870. [7] FERRARI F, SIGMUND O. A new generation 99 line Matlab code for compliance topology optimization and its extension to 3D[J]. Structural and Multidisciplinary Optimization, 2020, 62:2211-2228. [8] XIA L, XIA Q, HUANG X, et al. Bi-directional evolutionary structural optimization on advanced structures and materials: a comprehensive review[J]. Archives of Computational Methods in Engineering, 2018, 25:437-478. [9] WEI P, LI Z, LI X, et al. An 88-line MATLAB code for the parameterized level set method based topology optimization using radial basis functions[J]. Structural and Multidisciplinary Optimization, 2018, 58:831-849. [10] GUO X, ZHANG W, ZHONG W. Doing topology optimization explicitly and geometrically—a new moving morphable components based framework[J]. Journal of Applied Mechanics, 2014, 81(8): 081009. [11] Cheng K-T, OLHOFF N. An investigation concerning optimal design of solid elastic plates[J]. International Journal of Solids and Structures, 1981, 17(3):305-323. [12] 魏鹏, 范海坚, 李雪平, 等. 基于参数化水平集方法的微结构拓扑优化设计[J]. 计算力学学报, 2021, 38(4):471-478. WEI Peng, FAN Hai-jian, LI Xue-ping et al. Topology optimization for the design of microstructure base on parameterized level set method[J]. Chinese Journal of Computational Mechanics, 2021,38(04): 471-478. [13] ZHANG Y, XIAO M, LI H, et al. Topology optimization of material microstructures using energy-based homogenization method under specified initial material layout[J]. Journal Of Mechanical Science And Technology, 2019, 33(2):677-693. [14] GAO J, LI H, GAO L, et al. Topological shape optimization of 3D micro-structured materials using energy-based homogenization method[J]. Advances In Engineering Software, 2018, 116:89-102. [15] 王宪杰, 张洵安. 基于宏观性能的微观多孔材料拓扑优化[J]. 功能材料, 2014, 45(18):18078-18082. WANG Xian-jie, ZHANG Xun-an. Topology optimization of microstructures of cellular material based on the properties of macrostructures[J]. Journal of Functional Materials, 2014, 45(18): 18078-18082 [16] 龙凯, 王文伟, 贾娇. 宏观结构性能约束下的材料微结构拓扑优化. 复合材料学报, 2016, 33(7):1574-1583. LONG Kai, WANG Wen-wei, JIA Jiao. Topology optimization for microstructures of materials with macrostructure property constrain[J]. Acta Materiae Compositae Sinicat, 2016, 33(7): 1574-1583. [17] HUANG X, ZHOU S W, XIE Y M, et al. Topology optimization of microstructures of cellular materials and composites for macrostructures[J]. Computational Materials Science, 2013, 67:397-407. [18] KATO J, YACHI D, TERADA K, et al. Topology optimization of micro-structure for composites applying a decoupling multi-scale analysis[J]. Structural And Multidisciplinary Optimization, 2014, 49(4):595-608. [19] GAO J, WANG L, XIAO M, et al. An isogeometric approach to topological optimization design of auxetic composites with tri-material micro-architectures[J]. Composite Structures, 2021, 271:114163. [20] HUANG X, LI W. A new multi-material topology optimization algorithm and selection of candidate materials[J]. Computer Methods in Applied Mechanics and Engineering, 2021, 386:114114. [21] 赵清海, 张洪信, 蒋荣超, 等 考虑载荷不确定性的多材料结构稳健拓扑优化[J]. 振动与冲击, 2019, 38(19):182-190. ZHAO Qing-hai, ZHANG Hong-xin, JIANG Rong-chao, et al. Robust topology optimization design of a multi-material structure considering load uncertainty[J]. Journal of vibration and shock, 2019, 38(19):182-190. [22] 杜义贤, 郭名璧, 付君健, 等. 多材料负泊松比微结构拓扑优化设计[J]. 机械设计, 2021, 38(04): 80-84. DU Yi-xian, GUO Ming-bi, FU Jun-jian, et al. Topology optimization for the multi-material microstructure with negative Poisson’s ratio[J]. Journal of Machine Design, 2021, 38(4): 80-84 [23] ZHANG H, TAKEZAWA A, DING X, et al. Bi-material microstructural design of biodegradable composites using topology optimization[J]. Materials & Design, 2021, 209:109973. [24] 王昱, 吕恩利, 郭嘉明, 等. 极限热弹性材料微结构的拓扑优化设计[J]. 机械设计与制造, 2017, (7):161-163. WANG Yu, LV En-li, GUO Jia-ming, et al. Topological optimization design of microstructures for composite materials with extreme thermoelastic properties[J]. Machinery Design & Manufacture, 2017, (7): 161-163. [25] WANG Y, LUO Z, KANG Z, et al. A multi-material level set-based topology and shape optimization method[J]. Computer Methods in Applied Mechanics and Engineering, 2015, 283:1570-1586. [26] SHA W, XIAO M, GAO L, et al. A new level set based multi-material topology optimization method using alternating active-phase algorithm[J]. Computer Methods in Applied Mechanics and Engineering, 2021, 377:113674. [27] TAVAKOLI R, MOHSENI S M. Alternating active-phase algorithm for multimaterial topology optimization problems: a 115-line MATLAB implementation[J]. Structural and multidisciplinary optimization, 2014, 49(4): 621-42. [28] GAO X, CHEN W, LI Y, et al. Robust topology optimization of multi-material structures under load uncertainty using the alternating active-phase method[J]. Composite structures, 2021, 270(Aug.): 114065.1-.13. [29] ZHANG L, DING Z, SHA W, et al. Level set-based topological design of multiphase micro-architectured materials using alternating active-phase method[J]. Materials & Design, 2023, 225:111448. [30] ANDREASSEN E, ANDREASEN C S. How to determine composite material properties using numerical homogenization[J]. Computational Materials Science, 2014, 83:488-495.

PDF(1740 KB)

340

Accesses

0

Citation

Detail

段落导航
相关文章

/