非高斯测量噪声下的结构响应重构

祁义博,彭珍瑞

振动与冲击 ›› 2024, Vol. 43 ›› Issue (11) : 206-216.

PDF(4976 KB)
PDF(4976 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (11) : 206-216.
论文

非高斯测量噪声下的结构响应重构

  • 祁义博,彭珍瑞
作者信息 +

Structural response reconstruction under non-Gaussian measurement noise

  • QI Yibo, PENG Zhenrui
Author information +
文章历史 +

摘要

针对非高斯噪声下使用卡尔曼滤波(Kalman Filter, KF)算法进行响应重构时精度下降,甚至重构结果偏差较大的现象,提出一种非高斯卡尔曼滤波(Non-Gaussian Kalman Filter, NGKF)算法进行结构响应重构。首先将L1卡尔曼滤波(L1KF)算法引入结构响应重构,并重新构造了L1卡尔曼滤波算法中的损失函数,其次根据损失函数导出的系数阵惩罚状态方程和观测方程的噪声协方差阵,使KF算法适用于非高斯噪声。最后通过有限的加速度测量信号,结合重构方程计算结构的加速度、速度和位移响应。数值仿真和外伸梁试验均表明所提方法在仅使用有限数量的加速度传感器进行结构响应重构时具有良好的噪声鲁棒性,能有效降低重构误差,改善多种非高斯噪声下使用KF算法进行响应重构时偏差较大的现象。

Abstract

The accuracy of response reconstruction using the Kalman Filter (KF) algorithm is degraded under non-Gaussian noise. To tackle this issue, a non-Gaussian Kalman filter algorithm for structural response reconstruction is proposed. Firstly, the L1 Kalman Filter (L1KF) algorithm is introduced to structural response reconstruction, followed by a revised definition of the loss function within the L1KF. Secondly, the coefficient matrix derived according to the loss function penalizes the noise covariance matrix of the state equation and the observation equation, making the KF algorithm applicable to non-Gaussian noise. Finally, the acceleration, velocity, and displacement responses of the structure are computed from a limited number of acceleration measurements. Both numerical simulations and an overhanging beam test show that the proposed method has good noise robustness using only a limited number of accelerometers, effectively reducing the reconstruction error. The large bias in response reconstruction using KF algorithm under multiple non-Gaussian noises is improved.

关键词

响应重构 / 非高斯噪声 / 卡尔曼滤波

Key words

response reconstruction / non-Gaussian noise / Kalman filtering

引用本文

导出引用
祁义博,彭珍瑞. 非高斯测量噪声下的结构响应重构[J]. 振动与冲击, 2024, 43(11): 206-216
QI Yibo, PENG Zhenrui. Structural response reconstruction under non-Gaussian measurement noise[J]. Journal of Vibration and Shock, 2024, 43(11): 206-216

参考文献

[1] ZHANG C W, MOUSAVI A A, GHOLIPOUR G, et al. Vibration feature extraction using signal processing techniques for structural health monitoring: A review[J]. Mechanical Systems and Signal Processing, 2022, 177: 109175. [2] FAN G, HE Z, LI J. Structural dynamic response reconstruction using self-attention enhanced generative adversarial networks[J]. Engineering Structures, 2023, 276: 115334. [3] CAU J, BU F, WANG J, et al. Reconstruction of full-field dynamic responses for large-scale structures using optimal sensor placement[J]. Journal of Sound and Vibration, 2023, 554: 117693. [4] KAMMER D C. Estimation of structural response using remote sensor locations[J]. Journal of guidance, control, and dynamics, 1997, 20(3): 501-508. [5] LAW S S, LI J, DING Y. Structural response reconstruction with transmissibility concept in frequency domain[J]. Mechanical Systems and Signal Processing, 2011, 25(3): 952-968. [6] LI J, HAO H. Substructure damage identification based on wavelet-domain response reconstruction[J]. Structural Health Monitoring, 2014, 13(4): 389-405. [7] YANG J S, FU Z Y, ZOU Y F, et al. A response reconstruction method based on empirical mode decomposition and modal synthesis method[J]. Mechanical Systems & Signal Processing, 2023, 184: 109716. [8] 邹云峰, 付正亿, 何旭辉, 等. 基于经验模态分解和模型缩聚的动力响应重构方法研究[J]. 工程力学, 2022, 39(2): 67-75. ZOU Yunfeng, FU Zhengyi, He Xuhui, et al. Dynamic response reconstruction method based on empirical mode decomposition and model condensation[J]. Engineering Mechanics, 2022, 39(2): 67-75. [9] ZHU Z, ZHU S, WANG Y W, et al. Structural dynamic response reconstruction with multi-type sensors, unknown input, and rank deficient feedthrough matrix[J]. Mechanical Systems and Signal Processing, 2023, 187: 109935. [10] HUANG J, LI X, ZHANG F, et al. Identification of joint structural state and earthquake input based on a generalized Kalman filter with unknown input[J]. Mechanical Systems and Signal Processing, 2021, 151: 107362. [11] TATSIS K E, AGATHOS K, CHATZI E N, et al. A hierarchical output-only Bayesian approach for online vibration-based crack detection using parametric reduced-order models[J]. Mechanical Systems and Signal Processing, 2022, 167: 108558. [12] 张笑华, 周海洋, 吴志彪. 子结构传感器位置优化和响应重构[J]. 振动与冲击, 2020, 39(6): 257-262+270. ZHANG Xiaohua, ZHOU Haiyang, WU Zhibiao. Sensor location selection and response reconstruction of a substructure[J]. Journal of Vibration and Shock, 2020, 39(6): 257-262+270. [13] HE J, ZHANG X, XU B. KF-based multiscale response reconstruction under unknown inputs with data fusion of multitype observations[J]. Journal of Aerospace Engineering, 2019, 32(4): 04019038. [14] AZAM S E, CHATZI E, PAPADIMITRIOU C. A dual Kalman filter approach for state estimation via output-only acceleration measurements[J]. Mechanical systems and signal processing, 2015, 60: 866-886. [15] ZHANG X H, ZHU Z, YUAN G K, et al. Adaptive Mode Selection Integrating Kalman Filter for Dynamic Response Reconstruction[J]. Journal of Sound and Vibration, 2021, 515: 116497. [16] 张笑华, 吴志彪, 吴圣斌, 等. 基于移动窗卡尔曼滤波算法的结构响应重构[J]. 振动与冲击, 2021, 40(21):90-96+105. ZHANG Xiaohua, WU Zhibiao, WU Shengbin. Structural response reconstruction based on moving window Kalman filtering algorithm[J]. Journal of Vibration and Shock, 2021, 40(21): 90-96+105. [17] NAYEK R, CHAKRABORTY S, NARASIMHAN S. A Gaussian process latent force model for joint input-state estimation in linear structural systems[J]. Mechanical Systems and Signal Processing, 2019, 128: 497-530. [18] ROONIZI A K. Kalman Filtering in Non-Gaussian Model Errors: A New Perspective [Tips & Tricks] [J]. IEEE Signal Processing Magazine, 2022, 39(3): 105-114. [19] YUEN K V, LIU Y S, YAN W J. Estimation of time-varying noise parameters for unscented Kalman filter[J]. Mechanical Systems and Signal Processing, 2022, 180: 109439. [20] GANDHI M A, MILI L. Robust kalman filter based on a generalized maximum-likelihood-type estimator[J]. IEEE Transactions on Signal Processing, 2009, 58(5): 2509-2520. [21] ZHU H, ZHANG G, LI Y F, et al. A novel robust Kalman filter with unknown non-stationary heavy-tailed noise[J]. Automatica, 2021, 127: 109511. [22] KHODARAHMI M, MAIHAMI V. A review on Kalman filter models[J]. Archives of Computational Methods in Engineering, 2023, 30(1): 727-747. [23] KONG X, YANG W, LI B. Application of stabilized numerical integration method in acceleration sensor data processing[J]. IEEE Sensors Journal, 2021, 21(6): 8194-8203.

PDF(4976 KB)

Accesses

Citation

Detail

段落导航
相关文章

/