为探究粉煤灰替代率和细集料类型对高强混凝土冲击压缩性能的影响,以粉煤灰替代水泥比例为0、10%、15%、20%、25%为胶凝材料,玄武岩机制砂和天然砂为细集料配制C80高强混凝土,利用分离式霍普金森杆对其开展冲击压缩试验,计算破碎体分形维数量化混凝土破碎特征,并借助扫描电镜(SEM)分析混凝土微观形貌。结果表明:机制砂混凝土(MSC)的峰值应力和韧性均高于天然砂混凝土(NSC);随着粉煤灰替代率增加,混凝土峰值应变逐渐降低;当粉煤灰替代率10%时,混凝土的峰值应力和韧性均达到最高值,且破碎体分形维数最小、平均块径最大、综合表现的破碎特征最简单;与未掺粉煤灰组混凝土相比,粉煤灰替代率10%时混凝土的微观形貌致密,孔隙数量减少,整体密实度提升。
Abstract
In order to explore the influence of the replacement rate of fly ash and the type of fine aggregate on the impact compression performance of high-strength concrete, C80 high-strength concrete was prepared with the proportion of fly ash replacing cement as 0, 10%, 15%, 20% and 25% as cementitious materials, basalt manufactured sand and natural sand as fine aggregate, and the split Hopkinson pressure bar was used to carry out impact compression tests on it, and calculate the Fractal dimension of the broken body to quantify the crushing characteristics of concrete, And analyze the microstructure of concrete using scanning electron microscopy (SEM). The results show that the peak stress and toughness of manufactured sand concrete (MSC) are higher than those of natural sand concrete (NSC); As the replacement rate of fly ash increases, the peak strain of concrete gradually decreases; When the replacement rate of fly ash is 10%, the peak stress and toughness of concrete reach the highest value, and the Fractal dimension of the broken body is the smallest, the average block diameter is the largest, and the comprehensive broken characteristics are the simplest; Compared with the concrete without fly ash, when the fly ash substitution rate is 10%, the microstructure of the concrete is dense, the number of pores is reduced, and the overall compactness is improved.
关键词
粉煤灰 /
玄武岩机制砂 /
高强混凝土 /
分离式霍普金森压杆 /
冲击压缩 /
分形维数
{{custom_keyword}} /
Key words
fly ash /
Basalt manufactured sand /
high-strength concrete /
split Hopkinson pressure bar /
impact compression;fractal dimension
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 李昕,孙长海,李建安等.矿物掺和料对渗透结晶砂浆性能的影响[J].非金属矿,2022,45(1):27-30.
LI Xin, SUN Changhai, LI Jianan, et al. Effect of mineral admixtures on performance of mortar with cementitious capillary crystalline waterproofing materials[J]. Non-Metallic Mines, 2022, 45(1): 27-30.
[2] 陈小和,赵伟.不同机制砂的颗粒级配和胶砂性能研究[J].非金属矿,2021,44(4):47-49.
CHEN Xiaohe, ZHAO Wei. Research on particle size distribution and mortar performance of different manufactured sand[J]. Non-Metallic Mines, 2021, 44(4): 47-49.
[3] 黄锋,肖岩.轻质高强混凝土大直径霍普金森杆冲击试验研究[J].土木工程学报,2021,54(2):30-42.
HUANG Feng, XIAO Yan. Impact tests of high-strength,lightweight concrete withlarge spilt Hopkinson pressure bar[J]. China Civil Engineering Journal, 2021, 54(2): 30-42.
[4] CAO S, YILMAZ E, SONG W. Dynamic response of cement-tailings matrix composites under SHPB compression load[J]. Construction and Building Materials, 2018, 186: 892-903.
[5] WU Z, SHI C, HE W, et al. Static and dynamic compressive properties of ultra-high performance concrete (UHPC) with hybrid steel fiber reinforcements[J]. Cement and Concrete Composites, 2017, 79: 148-157.
[6] HUYNH L, FOSTER S, VALIPOUR H, et al. High strength and reactive powder concrete columns subjected to impact: Experimental investigation[J]. Construction and Building Materials, 2015, 78: 153-171.
[7] 徐金俊,唐月月,陈宇良等.海水海洋骨料混凝土霍普金森压杆动态力学性能试验研究[J].振动与冲击,2022,41(14):233-242.
XU Jinjun, TANG Yueyue, CHEN Yuliang, et al. Split-Hopkinson pressure bar tests on dynamic properties ofconcrete made of seawater and marine aggregates[J]. Journal of Vibration and Shock, 2022, 41(14): 233-242.
[8] JIANG J, FENG T, CHU H, et al. Quasi-static and dynamic mechanical properties of eco-friendly ultra-high-performance concrete containing aeolian sand[J]. Cement and Concrete Composites, 2019, 97: 369-378.
[9] 杨露,张文清.冲击荷载作用下混杂纤维混凝土能量耗散与破碎分形研究[J].工程爆破,2023,29(02):25-32+41.
YANG Lu, ZHANG Wenqing. Study on energy dissipation and fragmentation fractal of hybrid fiber reinforced concrete under impact loading[J]. Engineering Blasting, 2023, 29(2): 25-32+41.
[10] 陈猛,王瑜婷,陶云霄等.基于分形理论研究RTSF混凝土冲击压缩性能[J].东北大学学报(自然科学版),2022,43(02):266-273.
CHEN Meng, WANG Yuting, TAO Yunxiao, et al. Impact compression properties of recycled tyre steel fiber reinforced concrete based on fractal theory[J]. Journal of Northeastern University(Natural Science), 2022, 43(2): 266-273.
[11] LV Y, WU H, DONG H, et al. Experimental and numerical simulation study of fiber-reinforced high strength concrete at high strain rates[J]. Journal of Building Engineering, 2023, 65: 105812.
[12] 叶建峰,刘宪成,颜桂云等.钢纤维地质聚合物混凝土冲击力学性能研究[J].振动与冲击,2023,42(3):1-11.
YE Jianfeng, LIU Xiancheng, YAN Guiyun, et al. Impact mechanical properties of steel fiber geopolymer concrete[J]. Journal of Vibration and Shock, 2023, 42(3): 1-11.
[13] 冯滔滔,蒋金洋,刘志勇等.机制砂超高性能混凝土的冲击压缩力学性能[J].硅酸盐学报,2020,48(8):1177-1187.
FENG Taotao, JIANG Jinyang, LIU Zhiyong, et al. Impact Compression Mechanical Properties of Ultra-High Performance Concrete with Manufactured Sand[J]. Journal of the Chinese Ceramic Society, 2020, 48(8): 1177-1187.
[14] 戎志丹,王亚利,焦茂鹏等.超高性能混凝土的冲击压缩性能及损伤演变规律[J].硅酸盐学报,2021,49(11):2322-2330.
RONG Zhidan, WANG Yali, JIAO Maopeng, et al. Impact compressive performance and damage evolution of Ultra-High Performance Concrete[J]. Journal of the Chinese Ceramic Society, 2021, 49(11): 2322-2330.
[15] 纪杰杰,李洪涛,吴发名等.冲击荷载作用下岩石破碎分形特征[J].振动与冲击,2020,39(13):176-183+214.
JI Jiejie, LI Hongtao, WU Faming, et al. Fractal characteristics of rock fragmentation under impact load[J]. Journal of Vibration and Shock, 2020, 39(13): 176-183+214.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}