超声导波相控阵脉冲压缩全聚焦缺陷成像方法

许才彬1,左浩2,陈一馨2

振动与冲击 ›› 2024, Vol. 43 ›› Issue (11) : 50-57.

PDF(2339 KB)
PDF(2339 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (11) : 50-57.
论文

超声导波相控阵脉冲压缩全聚焦缺陷成像方法

  • 许才彬1,左浩2,陈一馨2
作者信息 +

Ultrasonic guided wave phased array pulse compression full focus defect imaging method

  • XU Caibin1, ZUO Hao2, CHEN Yixin2
Author information +
文章历史 +

摘要

针对超声导波缺陷成像中存在的入射信号能量低、缺陷成像分辨率不足等成像质量不高的问题,提出了一种超声导波相控阵脉冲压缩全聚焦缺陷成像方法。首先在长时宽、大带宽线性调频信号激励下,基于超声导波相控阵列逐元激励模式,获取被测结构的全矩阵捕获数据;然后对各响应信号做匹配滤波,对长时宽响应信号波包进行脉冲压缩;接着采用虚拟时间反转法,对脉冲压缩后所得信号进行频散和幅值补偿,以消除大带宽导致的信号相位畸变和因波扩散传播而导致的幅值下降,从而获得无相位畸变的窄时宽信号波包;最后设计了同时包含信号相位和幅值信息的成像指标,进行加权全聚焦成像。在含裂纹、表面缺陷的碳钢板中进行了超声导波缺陷成像实验,结果表明,所提方法可以实现单缺陷/双缺陷的高质量成像。

Abstract

A pulse compression based total focusing method using ultrasonic guided wave phased array for defect imaging was proposed. Firstly, under the excitation of a linear frequency modulation signal with a long duration and a large bandwidth, the full matrix capture data for the tested structure was obtained. Then signals were processed by pulse compression technique to compress the long duration wave packets. Next, the virtual time reversal method was used to compensate the dispersion and amplitude to eliminate the phase distortion caused by the large bandwidth and the amplitude reduction caused by the wave diffusion. In such a way, signals without phase distortion and with narrow durations were obtained. Finally, an imaging index including both phase and amplitude information was designed. Experiments were carried out in carbon steel plate with a crack and two defects and the results show that the proposed method can achieve high quality imaging for both defects.

关键词

超声导波 / 缺陷成像 / 相控阵 / 全聚焦 / 脉冲压缩

Key words

ultrasonic guided wave / defect imaging / phased array / total focusing method / pulse compression

引用本文

导出引用
许才彬1,左浩2,陈一馨2. 超声导波相控阵脉冲压缩全聚焦缺陷成像方法[J]. 振动与冲击, 2024, 43(11): 50-57
XU Caibin1, ZUO Hao2, CHEN Yixin2. Ultrasonic guided wave phased array pulse compression full focus defect imaging method[J]. Journal of Vibration and Shock, 2024, 43(11): 50-57

参考文献

[1] LEE H, LIM H J, SKINNER T, et al. Automated fatigue damage detection and classification technique for composite structures using Lamb waves and deep autoencoder[J]. Mechanical Systems and Signal Processing, 2022, 163: 108148. [2] 邓庆田, 杨智春. 导波在多损伤板结构中的散射[J]. 振动与冲击, 2010,29(4):40-43. DENG Qing-tian, YANG Zhi-chun. Scattering of guided wave in a plate-like structure with multiple damages[J]. Journal of Vibration and Shock, 2010,29(4):40-43. [3] MITRA M, GOPALAKRISHNAN S. Guided wave based structural health monitoring: A review[J]. Smart Materials and Structures, 2016, 25(5): 53001. [4] 温宇立, 武静, 林荣等. 基于相轨迹的多裂纹管道超声导波检测研究[J]. 振动与冲击, 2017,36(23):114-122. WEN Yu-li, WU Jing, LIN Rong, et al. Multi-crack detection in pipes using ultrasonic guided wave based on phase trajectories[J]. Journal of Vibration and Shock, 2017,36(23):114-122. [5] ORTA A H, KERSEMANS M, Van Den ABEELE K. A comparative study for calculating dispersion curves in viscoelastic multi-layered plates[J]. Composite Structures, 2022, 294: 115779. [6] WILCOX P D. A rapid signal processing technique to remove the effect of dispersion from guided wave signals[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2003, 50(4): 419-427. [7] 宋立忠, 郭敏, 王欣欣等. 城市轨道交通箱梁中高频导波特性分析[J]. 振动与冲击, 2019,38(18):207-214. SONG Li-zhong, GUO Min, WANG Xin-xin, et al. Mid-and high-frequency wave characteristics of a rail transit box-girder bridge[J]. Journal of Vibration and Shock, 2019,38(18):207-214. [8] SENYUREK V Y, BAGHALIAN A, TASHAKORI S, et al. Localization of multiple defects using the compact phased array (CPA) method[J]. Journal of Sound and Vibration, 2018, 413: 383-394. [9] LIU Z, SUN K, SONG G, et al. Damage localization in aluminum plate with compact rectangular phased piezoelectric transducer array[J]. Mechanical Systems and Signal Processing, 2016, 70-71: 625-636. [10] 张耀烨, 李冬生, 周智. 超声导波针对均匀腐蚀的无基准评定方法[J]. 振动与冲击, 2019,38(2):110-115. ZHANG Yao-ye, LI Dong-sheng, ZHOU Zhi. Baseline-free method for the evaluation of uniform corrosion based on ultrasonic guided waves[J]. Journal of Vibration and Shock, 2019,38(2):110-115. [11] 肖航, 肖黎, 屈文忠. 温变工况下超定独立成分分析导波监测方法[J]. 振动与冲击, 2020, 39(15):133-141. XIAO Hang, Xiao Li, QU Zhong-wen. Guided wave monitoring method based on over-determined independent component analysis under temperature variation conditions[J]. Journal of Vibration and Shock, 2020, 39(15):133-141. [12] KUDELA P, RADZIENSKI M, OSTACHOWICZ W, et al. Structural Health Monitoring system based on a concept of Lamb wave focusing by the piezoelectric array[J]. Mechanical Systems and Signal Processing, 2018, 108: 21-32. [13] YANG Z, ZHU M, LANG Y, et al. FRF-based lamb wave phased array[J]. Mechanical Systems and Signal Processing, 2022, 166: 108462. [14] HOLMES C, DRINKWATER B W, WILCOX P D. Post-processing of the full matrix of ultrasonic transmit–receive array data for non-destructive evaluation[J]. NDT & E International, 2005, 38(8): 701-711. [15] 李衍. 超声相控阵与全聚焦法成像特性比照评析[J]. 无损探伤, 2021, 45(01): 1-6. LI Yan. Comparative analysis of imaging characteristics of ultrasonic phased array and total focusing method[J]. NDT, 2021, 45(01): 1-6. [16] 张海燕, 徐梦云, 张辉, 等. 利用扩散场信息的超声兰姆波全聚焦成像[J]. 物理学报, 2018, 67(22): 208-215. ZHANG Hai-yan, XU Meng-yun, ZHANG Hui, et al. Full focal imaging of ultrasonic Lamb waves using diffuse field information[J]. Acta Physica Sinica, 2018, 67(22): 208-215. [17] LANG Y, TIAN S, YANG Z, et al. Focusing phase imaging for Lamb wave phased array[J]. Smart Materials and Structures, 2021, 31(2): 25001. [18] LANG Y F, TIAN S H, YANG Z B, et al. Array focused Lamb wave Hilbert holographic imaging method[J]. Mechanics of Advanced Materials and Structures, 2021. [19] CHEN H, XU K, LIU Z, et al. Sign coherence factor-based search algorithm for defect localization with laser generated Lamb waves[J]. Mechanical Systems and Signal Processing, 2022, 173: 109010. [20] 朱新杰, 邓明晰, 蔡淑娟, 等. 板中超声导波弧形合成孔径阵列多帧满秩成像检测[J]. 机械工程学报, 2020, 56(24): 24-30. ZHU Xin-jie, DENG Ming-xi, CAI Shu-juan, et al. Multi-frames imaging detection of full rank for arc synthetic aperture array of ultrasonic guided waves in plates[J]. Journal of Mechanical Engineering, 2020, 56(24): 24-30. [22] LIN J, HUA J, ZENG L, et al. Excitation waveform design for Lamb wave pulse compression[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2016, 63(1): 165-177. [23] XU C, HU N, DENG M. Waveform covariance imaging for Lamb wave phased array[J]. Structural Health Monitoring, 2023, 22(1): 388-397. [24] XU C, DENG M. Lamb wave imaging based on multi-frequency sparse decomposition[J]. Mechanical Systems and Signal Processing, 2022, 174: 109076. [25] XU B, GIURGIUTIU V. Single mode tuning effects on Lamb wave time reversal with piezoelectric wafer active sensors for structural health monitoring[J]. Journal of Nondestructive Evaluation, 2007, 26(2-4): 123-134. [26] WANG J, SHEN Y. An enhanced Lamb wave virtual time reversal technique for damage detection with transducer transfer function compensation[J]. Smart Materials and Structures, 2019, 28(8): 85017. [27] DU F, ZENG L, SHA B, et al. Damage imaging in composite laminates using broadband multipath Lamb waves[J]. IEEE Transactions On Instrumentation and Measurement, 2022, 71: 1-14. [28] LIU Y, SUN K, YANG T, et al. A Robust Lamb Wave Imaging Approach to Plate-like structural health monitoring of materials with transducer array position errors[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2022, 69(6): 2162-2177. [29] BAO Q, YUAN S, GUO F, et al. Transmitter beamforming and weighted image fusion-based multiple signal classification algorithm for corrosion monitoring[J]. Structural Health Monitoring, 2019, 18(2): 621-634.

PDF(2339 KB)

Accesses

Citation

Detail

段落导航
相关文章

/