开孔硬涂层薄壁圆柱壳复合结构的半解析建模及振动特性分析

魏德正,杨建,张月

振动与冲击 ›› 2024, Vol. 43 ›› Issue (11) : 58-65.

PDF(3212 KB)
PDF(3212 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (11) : 58-65.
论文

开孔硬涂层薄壁圆柱壳复合结构的半解析建模及振动特性分析

  • 魏德正,杨建,张月
作者信息 +

Semi-analytical modeling and vibration characteristics analysis of perforated hard coated thin-walled cylindrical shell composite structure

  • WEI Dezheng, YANG Jian, ZHANG Yue
Author information +
文章历史 +

摘要

针对硬涂层薄壁圆柱壳复合结构的圆形开孔问题,提出了一种参数化的周向区域分解法,并基于Rayleigh-Ritz法建立了开孔硬涂层薄壁圆柱壳复合结构的自由振动半解析模型。以涂敷NiCoCrAlY+YSZ硬涂层材料的开孔薄壁圆柱壳为例,通过对比解析与有限元计算结果验证了该半解析模型的有效性和合理性。同时,探讨了周向均布条件下开孔数量、轴向位置、开孔大小和硬涂层弹性模量对开孔硬涂层薄壁圆柱壳复合结构振动特性的作用规律。结果表明,开孔会增加复合结构的固有频率,但随着周向均布孔数的增加,结构固有频率不断减小,且当开孔数等于周向半波数或其特殊倍数时,结构固有频率会发生突变升高的特殊现象;随着硬涂层弹性模量的增加,结构固有频率均不断增加;随着轴向开孔位置的升高,结构固有频率不断降低,且当开孔数等于周向半波数或其特殊倍数时,降低幅度会大大增加;孔径的增加也会降低结构固有频率,但当开孔数等于周向半波数或其特殊倍数时,结构固有频率会随着孔径的增加而增大。

Abstract

In order to solve the circular perforation problem of the composite thin-walled hard-coating cylindrical shell, a parameterized circumferential domain decomposition method is proposed. On this basis, a semi-analytical model of free vibration of the perforated thin-walled hard-coating cylindrical shell is established based on the Rayleigh-Ritz method. Taking the perforated thin-walled cylindrical shell coated with NiCoCrAlY+YSZ hard coating material as an example, the rationality of the semi-analytical model is verified by comparing the analytical and finite element results. Meanwhile, the effects of the circumferential perforation number, the axial perforation position, the perforation radius, and the coating elastic modulus on the vibration characteristics of the perforated hard-coating thin-walled cylindrical shell are discussed. The results show that the natural frequencies of the composite structure decrease with the increase of the circumferential perforation number, and will increase abruptly when the perforation number is equal to the circumferential half-wave number or its multiple. As the elastic modulus of the hard coating increases, the natural frequencies of the shell continue to increase. With the increase of the axial perforation position, the natural frequencies gradually decrease, and the decrease amplitudes will greatly increase when the perforation number is equal to the circumferential half-wave number or its multiple. Moreover, the natural frequencies decrease with the increase of the perforation radius on the whole, but the impact pattern will be opposite when the perforation number is equal to the circumferential half-wave number or its multiple.

关键词

硬涂层圆柱壳 / 圆形开孔 / 自由振动 / 半解析

Key words

Hard-coating cylindrical shell / Circular perforation / Free vibration / Semi-analytical

引用本文

导出引用
魏德正,杨建,张月. 开孔硬涂层薄壁圆柱壳复合结构的半解析建模及振动特性分析[J]. 振动与冲击, 2024, 43(11): 58-65
WEI Dezheng, YANG Jian, ZHANG Yue. Semi-analytical modeling and vibration characteristics analysis of perforated hard coated thin-walled cylindrical shell composite structure[J]. Journal of Vibration and Shock, 2024, 43(11): 58-65

参考文献

[1] Leissa W. Vibration of shells[M]. Washinton: Acoustical Society of America, 1973. [2] 曹志远. 板壳振动理论[M]. 北京: 中国铁道出版社, 1989. [3] Soedel W, Qatu M S. Vibrations of Shells and Plates, Third Edition[J]. Journal of the Acoustical Society of America, 2005, 117(4): 1683-1683. [4] 曹雄涛. 层合板壳振动和声辐射预测方法[D]. 上海: 上海交通大学, 2012. [5] 徐滨士, 刘世参. 表面工程[M]. 北京: 机械工业出版社, 2000. [6] Cao Xue-qing, Guo Jian-yi, Li Yong-qi, et al. Prediction of postbuckling characteristics of perforated metamaterial cylindrical shells under axial compression[J]. Solida Sinica, 2023, 181(36): 428-442. [7] Stefano G, Harri H. Free vibration of perforated cylindrical shells of revolution: Asymptotics and effective material parameters[J]. Computer Methods in Applied Mechanics and Engineering, 2023, 403: 115700. [8] Sun Wei, Zhu Ming-wei, Wang Zhuo. Free vibration analysis of a hard-coating cantilever cylindrical shell with elastic constraints [J]. Aerospace Science and Technology, 2017, 63: 232-244. [9] Li Hui, Sun Wei, Zhu Ming-wei, et al. Experimental study on the influence on vibration characteristics of thin cylindrical shell with hard coating under cantilever boundary condition[J]. Shock and Vibration, 2017, 2017: 1-23. [10] Yang Jian, Song Hua, Chen Dong, et al. Free vibration and damping analysis of the cylindrical shell partially covered with equidistant multi-ring hard coating based on a unified Jacobi-Ritz method[J]. Science Progress, 2021, 104(3): 1-21. [11] Zhang Yue, Song Hua, Yu Xiao-guang, et al. Modeling and analysis of forced vibration of the thin-walled cylindrical shell with arbitrary multi-ring hard coating under elastic constraint[J]. Thin-Walled Structures, 2022, 173: 109037. [12] 王宇, 夏鑫, 杨志宏, 等. 高转速硬涂层阻尼薄壁圆柱壳的行波共振特性研究[J]. 振动与冲击, 2021, 40(13): 73-81. Wang Yu, Xia Xin, Yang Zhi-hong, et al. Traveling wave resonance characteristics of thin-walled cylindrical shells with high rotating speed and hard coating damping[J]. Journal of Vibration and Shock, 2021, 40(13): 73-81. [13] Du Dong-xu, Sun Wei, Yan Xian-fei, et al. Free vibration analysis of rotating thin-walled cylindrical shells with hard coating based on Rayleigh-Ritz method[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2021, 235(10): 1170-1186. [14] Zhang Yue, Sun Wei, Yang Jian, et al. Analytical analysis of forced vibration of the hard-coating cylindrical shell with material nonlinearity and elastic constraint[J]. Composite Structures, 2018, 187: 281-293. [15] Jin Guo-yong, Ye Tian-gui, Chen Yue-hua, et al. An exact solution for the free vibration analysis of laminated composite cylindrical shells with general elastic boundary conditions[J]. Composite Structures, 2013, 106: 114-127. [16] Song Xu-yuan, Han Qing-kai, Zhai Jing-yu. Vibration analyses of symmetrically laminated composite cylindrical shells with arbitrary boundaries conditions via Rayleigh-Ritz method[J]. Composite Structures, 2015, 134: 820-830. [17] Zhang Yue, Yang Jian, Song Hua, et al. Performance evaluation for the domain decomposition method in nonlinear vibration of the composite hard-coating cylindrical shell[J]. Science Progress, 2023,106(1): 1-22.

PDF(3212 KB)

233

Accesses

0

Citation

Detail

段落导航
相关文章

/