水介质中冰-桥墩碰撞动力响应分析

贡力,董洲全,杨腾腾,崔越,杜云飞

振动与冲击 ›› 2024, Vol. 43 ›› Issue (11) : 72-82.

PDF(4508 KB)
PDF(4508 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (11) : 72-82.
论文

水介质中冰-桥墩碰撞动力响应分析

  • 贡力,董洲全,杨腾腾,崔越,杜云飞
作者信息 +

Dynamic response analysis of ice-bridge pier collision in water medium

  • GONG Li, DONG Zhouquan, YANG Tengteng, CUI Yue, DU Yunfei
Author information +
文章历史 +

摘要

为准确模拟冰-桥墩碰撞过程中墩体结构的动力响应,基于流固耦合(FSI)的计算方法,运用ANSYS/LS-DYNA软件数值模拟了水介质中冰排与桥墩在不同碰撞影响参数下的动力响应。结果表明:恒定附加质量(CAM)模型相比FSI模型冰载荷计算结果偏大,是因为CAM模型忽略了降低冰排速度的“水垫效应”,但其计算效率高,计算时间是FSI模型的1/10,更有利于桥墩防撞设计,而FSI模型能够更真实地模拟冰-桥墩碰撞场景。综合分析该研究所模拟的不同冰排工况,发现桥墩在冰排撞击作用下呈现明显的冰激结构振动特征,桥墩侧向位移云图随着应力波的传递呈现明显的层状分布,其顶部侧向位移幅度最大,因此在工程设计时应充分考虑其对桥梁整体安全的影响;随着冰排速度、冰排厚度和冰排压缩强度的增大,冰载荷平均值均呈现近似多项式函数关系。此外,研究发现当冰排压缩强度小于2.668MPa(环境温度高于-15℃)时,冰载荷平均值明显减小,表明环境温度的变化对于桥墩受冰排撞击挤压作用所受的冰害问题具有显著的差异。其仿真研究成果拟为桥梁及桥墩防撞设施设计提供参考。

Abstract

In order to accurately simulate the dynamic response of the pier structure during an ice-pier collision, the dynamic response of ice sheet and piers in a water medium under different collision impact parameters is numerically simulated using ANSYS/LS-DYNA software based on the fluid-solid coupling (FSI) calculation method. The results show that the results of the constant added mass (CAM) model are larger than those of the FSI model because the CAM model neglects the "water cushion effect" which reduces the velocity of the ice sheet, but its calculation efficiency is high and the calculation time is 1/10 of that of the FSI model, which is more conducive to the design of bridge pier collision avoidance. The FSI model is able to simulate ice-bridge pier collision scenarios more realistically. A comprehensive analysis of the different ice displacement conditions simulated in this study reveals that the bridge piers show obvious ice excited structural vibration characteristics under the effect of ice displacement impact, and the lateral displacement cloud of the bridge piers shows an obvious laminar distribution with the transfer of stress waves, with the largest lateral displacement amplitude at the top, so its impact on the overall safety of the bridge should be fully considered in the engineering design; With the increase of ice sheet speed, ice sheet thickness and ice sheet compression strength, the average value of ice load shows an approximate polynomial function relationship. In addition, it is found that when the compression strength of the ice sheet is less than 2.668MPa (the ambient temperature is higher than -15℃), the average value of the ice load decreases significantly, which indicates that the change of the ambient temperature has a significant difference for the bridge pier subjected to ice damage by the ice sheet impact and extrusion. The simulation research results are proposed to provide reference for the design of bridge and bridge pier collision avoidance facilities.

关键词

数值模拟 / 流固耦合 / 冰载荷 / 桥墩 / 水介质

Key words

numerical simulation / fluid-solid interaction / ice load / bridge pier / water media

引用本文

导出引用
贡力,董洲全,杨腾腾,崔越,杜云飞. 水介质中冰-桥墩碰撞动力响应分析[J]. 振动与冲击, 2024, 43(11): 72-82
GONG Li, DONG Zhouquan, YANG Tengteng, CUI Yue, DU Yunfei. Dynamic response analysis of ice-bridge pier collision in water medium[J]. Journal of Vibration and Shock, 2024, 43(11): 72-82

参考文献

[1] 季顺迎. 冰工程中的关键力学问题专题序[J]. 力学学报, 2021, 53(3): 639640 JI Shunying. Preface of key mechanical problems in ice engineering[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(3): 639-640. [2] 张于晔, 李清华, 樊伟, 等. 车辆撞击下预制节段拼装桥墩的损伤分析与评估[J]. 振动与冲击, 2022, 41(24): 150-158+209. ZHANG Yuye, LI Qinghua, FAN Wei, et al. Damage analysis and assessment of precast segmental columns subjected to vehicle collision. [J]. Journal of Vibration and Shock, 2022, 41(24): 150-158+209. [3] 岳前进, 郭峰玮, 毕祥军, 等. 冰致自激振动测量与机理解释[J]. 大连理工大学学报, 2007(01): 1−5. YUE Qianjin, GUO Fengwei, BI Xiangjun, et al. Measurement and explanation for its mechanism of ice-induced self-excited vibration[J]. Journal of Dalian University of Technology, 2007, 47(1): 1-5. [4] 宋安, 范晓雷, 史庆增, 等. 闸墩冰荷载及过冰能力的模型试验研究[J]. 水利学报, 2005(09): 1121-1126+1132. SONG An, FAN Xiaolei, SHI Qingzeng, et al. Model test for ice-force acting on shice piers and ice passing capacity[J]. Joumal of Hydraulic Engineering 2005, 36( 9): 1121-1126. [5] 季顺迎, 狄少丞, 李正, 等. 海冰与直立结构相互作用的 散单元数值模拟[J]. 工程力学, 2013, 30(01): 463-469. JI Shunying, DI Shaocheng, LI Zheng, et al. Discrete element modelling of interaction between sea ice and vertical offshore structures[J]. Engineering Mechanics, 2013, 30(1): 463-469. [6] YUE Q, GUO F. Dynamic ice forces of slender vertical structures due to ice crushing[J]. Cold Regions Science and Technology, 2009, 56(2): 77-83. [7] 王峰, 邹早建, 任奕舟. 基于粘聚单元模型的平整冰-竖直圆柱体碰撞数值模拟[J]. 振动与冲击, 2019, 38(16): 153-158 WANG Feng, ZOU Zaojian, REN Yizhou. Numerical simulation of level ice vertical cylinder collision based on a cohesive element model[J]. Journal of Vibration and Shock, 2019, 38(16): 153-158. [8] GONG Li, Zhouquan DONG, Chunling JIN, et al. Flow-Solid Coupling Analysis of Ice-Concrete Collision Nonlinear Problems in the Yellow River Basin[J]. Water, 2023, 15(4):643. [9] 王祥, 胡冰, 刘璐, 等. 冰区航行船舶冰阻力及六自由度运动响应的离散元分析 [J]. 工程力学, 2023, 40(04): 243-256. WANG Xiang, HU Bing, LIU Lu, et al. Discrete element analysis of ice resistances and six-degrees-of-freedom motion response of ships in ice-covered regions[J]. Engineering Mechanics, 2023,40(04):243-256. [10] 汪春辉, 王嘉安, 王超, 等. 基于S-ALE方法的圆柱体垂直出水破冰研究[J]. 力学学报, 2021, 53(11): 3110-3123. WANG Chunhui, WANG Jiaan, WANG Chao, et al. Research on vertical movement of cylindrical structure out of water and breaking through ice layer based on S-ALE method. Chinese Journal of Theoretical and Applied Mechanics, 2021,53(11): 3110-3123. [11] 孟一, 易伟建. 混凝土圆柱体试件在低速冲击下动力效应的研究[J]. 振动与冲击, 2011, 30(3): 205-210. MENG Yi, YI Jianwei. Dynamic behavior of concrete cylinder specimens under low velocity impact[J]. Journal of Vibration and Shock, 2011, 30(3): 205-210. [12] 贡力, 王鸿, 杨轶群, 等. 流冰对输水隧洞衬砌的撞击影响研究[J] . 振动与冲击, 2021, 40(04):72-80. GONG Li, WANG Hong, YANG Yiqun, et al. A study on the impact effect of drift ice on the lining of a water tunnel[J]. Journal of Vibration and Shock, 2021, 40(4): 72-80. [13] 李鹏浩, 李忠龙, 朱胜阳, 等. 冰击荷载作用下高速车辆-轨道-桥梁系统耦合振动分析[J]. 中国公路学报, 2021, 34(04):187-197. LI Penghao, LI Zhonglong, ZHU Shengyang, et al. Coupled Vibration Analysis of High-speed Vehicle-track-bridge System Subjected to Floating Ice Collision[J]. China Journal of Highway and Transport, 2021, 34 (04): 187-197 [14] 张伟. 船舶与层冰碰撞的数值模拟[D]. 大连: 大连理工大学, 2021. ZHANG Wei, Numerical Simulation of Collision between Ship and Level Ice[D]. Dalian University of Technology, 2021. [15] Masterson D M, Frederking R, Wright B, et al. A revised ice pressure-area curve: Preceedings, 19t International Conference on Port and Ocean Engineering under Arctic Conditions, Dalian, 2007. [16] 刘德良. 北极冰区船舶碎冰阻力数值仿真研究[D]. 大连: 大连理工大学, 2018. LIU Deliang. Numerical simulation of crushed ice resistance of ship in arctic[D]. Dalian: Dalian University of Technology, 2018. [17] Wu Min, Jin Liu, Du Xiuli. Dynamic response analysis of bridge precast segment piers under vehicle collision[J]. Engineering Failure Analysis, 2021, 124. [18] Wang F, Zou Z, Zhou L, et al. A simulation study on the interaction between sloping marine structure and level ice based on cohesive element model[J]. Cold Regions Science and Technology, 2018, 149. [19] 柳春光, 贾玲玲. 冰激桥墩振动室内模型试验研究[J]. 振动与冲击, 2011, 30(01): 132-136. LIU Chunguang, JIA Lingling. Ice-induced pier vibration model test[J]. Journal of Vibration and Shock, 2011, 30 (01):132-136 [20] 张月晴, 肖国杰, 陈孟佳. 近60年银川气温变化特征分析[J]. 成都信息工程大学学报, 2021, 36(06): 680-686. ZHANG Yueqing, XIAO Guojie, CHEN Mengjia. Analysis on the Characteristics of Temperature Change in Yinchuan in Recent 60 Years[J]. Journal of Chengdu University of Information Technology, 2021, 36(06): 680-686. [21] 王庆凯, 张宝森, 邓宇,等. 黄河冰单轴压缩强度的试验与影响因素探究[J]. 水利水电技术, 2016, 47(09): 90-94. WANG Qingkai, ZHANG Baosen, DENG Yu, et al. Study on test of uniaxial compressive strength of ice in Yellow River and its influencing factors[J]. Water Resources and Hydropower Engineering, 2016, 47(09): 90-94. [22] Petersen M J. Dynamic of Ship Collisions[J]. Ocean Engineering, 1982, 9(4): 295-329. [23] Ming Song, Ekaternia Kim, Jørgen Amdahl, Jun Ma, Yi Huang. A comparative analysis of the fluid-structure interaction method and the constant added mass method for ice-structure collisions[J]. Marine Structures, 2016, 49. [24] 王自力, 蒋志勇, 顾永宁. 船舶碰撞数值仿真的附加质量模型[J]. 爆炸与冲击, 2002, 22(4): 321-326. WANG Zili, JIANG Zhiyong, GU Yongning. An Added Water Mass Model for Numerical Simulation of Ship/ship Collisions[J]. Explosion and Shock Waves, 2002, 22(4): 321-326. [25] 陈伟斌. 海冰与孤立桩柱碰撞破碎模型[J]. 海洋环境科学, 1995(02): 74−80. CHEN Weibin. Failure Modes and Damage Processes of Sea Ice in front of the isolated Cylinder Pile[J]. Marine Environmental Science, 1995(02): 74−80.

PDF(4508 KB)

Accesses

Citation

Detail

段落导航
相关文章

/