基于压电导纳的叠堆型压电智能骨料工作性能实验研究

兰成明1,刘鸿辉1,王建军2,李伟杰3

振动与冲击 ›› 2024, Vol. 43 ›› Issue (11) : 9-18.

PDF(3464 KB)
PDF(3464 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (11) : 9-18.
论文

基于压电导纳的叠堆型压电智能骨料工作性能实验研究

  • 兰成明1,刘鸿辉1,王建军2,李伟杰3
作者信息 +

Experimental study on working performance of stacked piezoelectric smart aggregate based on piezoelectric admittance

  • LAN Chengming1, LIU Honghui1, WANG Jianjun2, LI Weijie3
Author information +
文章历史 +

摘要

叠堆型压电智能骨料是一种以压电叠堆为核心元件制备的新型换能器。相比于传统的智能骨料,它有着更优异的力电耦合性能,可有效提高结构损伤诊断的精度和可靠性,在结构健康监测领域有重要的应用前景。但是,目前主要侧重于器件的设计和理论建模,基于压电导纳的器件工作性能还需进一步评估。设计了温度敏感性实验,分析了器件的谐振频率在温度梯度下的变化规律;开展了28天的浸水实验,绘制了器件谐振频率随浸水天数的变化曲线;制备了三个200 mm×200 mm×200 mm土体试件,并将器件嵌入到土体试件中开展含水率的监测实验,通过分析不同含水率下的量化指标对土体含水状态进行监测。研究结果表明,叠堆型压电智能骨料的谐振频率随温度的升高而线性下降;在28天浸水过程中,谐振频率的最大偏移率不超过10%,稳定性良好;基于导纳信号计算得到的量化指标均随土体试件含水率的升高而增大,可有效监测土体含水率的变化。

Abstract

The smart aggregate based on piezoelectric stacks is a new type of transducer, which usually use piezoelectric stacks as the core element. Compared with traditional smart aggregates, it has superior electromechanical coupling performance, which can effectively improve the accuracy and reliability of structural damage diagnosis and has important application prospects in the field of structural health monitoring. However, the current study mainly focused on the device design and theoretical modeling, the device performance based on electromechanical admittance needs to be further evaluated. A temperature-sensitive experiment was designed to analyze the variation of the resonant frequencies of the device under temperature gradient; a 28-day water immersion experiment was carried out to plot the variation of the resonant frequencies of the device with the number of water immersion days; three soil specimens with dimensions of 200 mm 200 mm 200 mm were prepared, and the devices were embedded into the soil specimens to conduct water content monitoring experiment. The water contents of the soil specimens were monitored by the quantitative indicators under different water contents. The results show that the resonance frequencies of the smart aggregates based on piezoelectric stacks decrease linearly with the increase of temperature; the maximum shift of the resonance frequencies do not exceed 10% during 28 days of water immersion, indicating good stability; the quantitative indicators calculated based on admittance signals all increase with the increasing moisture content of the soil specimens, which can effectively monitor the changes in soil moisture content.

关键词

叠堆型压电智能骨料 / 温度敏感性 / 压电导纳 / 量化指标 / 稳定性

Key words

smart aggregates based on piezoelectric stacks / temperature sensitivity / electromechanical admittance / quantitative indicators / stability

引用本文

导出引用
兰成明1,刘鸿辉1,王建军2,李伟杰3. 基于压电导纳的叠堆型压电智能骨料工作性能实验研究[J]. 振动与冲击, 2024, 43(11): 9-18
LAN Chengming1, LIU Honghui1, WANG Jianjun2, LI Weijie3. Experimental study on working performance of stacked piezoelectric smart aggregate based on piezoelectric admittance[J]. Journal of Vibration and Shock, 2024, 43(11): 9-18

参考文献

[1] 朱宏平, 余璟, 张俊兵. 结构损伤动力检测与健康监测研究现状与展望[J]. 工程力学, 2011, 28(02): 1-11+17. ZHU Hong-ping, YU Jing, ZHANG Jun-bing. A summary review and advantages of vibration-based damage identification methods in structural health monitoring[J]. Engineering Mechanics, 2011, 28(02): 1-11+17. [2] Mishra M, Lourenço P B, Ramana G V. Structural health monitoring of civil engineering structures by using the internet of things: A review[J]. Journal of Building Engineering, 2022, 48: 103954. [3] 霍林生, 陈胜斌, 李荣荣, 等. 基于压电阻抗技术的阻尼液黏度监测方法[J]. 压电与声光, 2021, 43(06): 805-808+813. HUO Linsheng, CHEN Shengbin, LI Rongrong, et al. Method of monitoring damping fluid viscosity based on piezoelectric impedance technology[J]. Piezoelectric & Acoustooptics, 2021, 43(06): 805-808+813. [4] Li G P, Luo M Z, Huang J P, et al. Early-age concrete strength monitoring using smart aggregate based on electromechanical impedance and machine learning[J]. Mechanical Systems and Signal Processing, 2023, 186: 109865. [5] 侯爽, 杨树森, 冷志鹏. 剪应力压电智能骨料标定方法研究[J]. 防灾减灾工程学报, 2022, 42(04): 844-849. HOU Shuang, YANG Shusen, LENG Zhipeng. A calibration method of shear stress piezoelectric smart aggregate[J]. Journal of Disaster Prevention and Mitigation Engineering, 2022, 42(04): 844-849. [6] Soh C K, Tseng K H, Bhalla S, et al. Performance of Smart Piezoceramic Patches in Health Monitoring of RC Bridge[J]. Smart Materials and Structures, 2000, 9(04): 533-542. [7] Saafi M, Sayyah T. Health monitoring of concrete structures strengthened with advanced composite materials using piezoelectric transducers[J]. Composites Part B-Engineering, 2001, 32(04): 333-342. [8] 周明乐, 李友荣, 鲁光涛, 等. 叠加式压电陶瓷智能骨料特性仿真研究[J]. 武汉科技大学学报, 2018, 41(05): 359-364. ZHOU Mingle, LI Yourong, LU Guangtao, et al. Characterization of PZT-stacked smart aggregates by numerical simulation[J]. Journal of Wuhan University of Science and Technology, 2018, 41(05): 359-364. [9] 齐宝欣, 张雨, 贾连光. 保护层材料对智能骨料性能影响的试验研究[J]. 压电与声光, 2018, 40(04): 568-573+577. QI Baoxin, ZHANG Yu, JIA Lianguang. Experimental study on the influence of protective layer material on the properties of smart aggregate[J]. Piezoelectric & Acoustooptics, 2018, 40(04): 568-573+577. [10] 杜国锋, 何明星, 吴方红, 等. 动荷载作用下的智能骨料力电效应仿真分析[J]. 武汉大学学报, 2016, 49(04): 572-576+584. DU Guofeng, HE Mingxing, WU Fanghong, et al. Simulation analysis of mechano-electric effect of smart aggregate under dynamic loading[J]. Engineering Journal of Wuhan University, 2016, 49(04): 572-576+584. [11] Song G B, Gu H C, Mo Y L. Smart aggregates: multi-functional sensors for concrete structures—a tutorial and a review[J]. Smart Materials & Structures, 2008, 17(03): 033001. [12] Hou S, Zhang H B, Ou J P. A PZT-based smart aggregate for compressive seismic stress monitoring[J]. Smart Materials and Structures, 2012, 21(10):105035. [13] 杜国峰, 吴方红, 何明星, 等. 基于压电陶瓷的高强度智能骨料研制[J]. 广西大学学报(自然科学版), 2016, 41(02): 301-307. DU Guo-feng, WU Fang-hong, HE Ming-xing, et al. Development of high strength smart aggregate based on piezoelectric ceramic transducers[J]. Journal of Guangxi University (Nat Sci Ed), 2016, 41(02): 301-307. [14] Wang J J, Kong Q Z, Shi Z F, et al. Electromechanical properties of smart aggregate: theoretical modeling and experimental validation[J]. Smart Materials and Structures, 2016, 25(09): 095008. [15] 侯爽, 雷晋芳, 欧进萍. 基于压电智能骨料的沥青混凝土路面车辆动态荷载监测[J]. 振动与冲击, 2014, 33(04): 42-47. HOU Shuang, LEI Jin-fang, OU Jin-ping. Vehicle load monitoring for asphalt concrete pavement based on smart aggregates[J]. Journal of Vibration and Shock, 2014, 33(04): 42-47. [16] 张浩, 李俊杰, 康飞. 基于压电智能骨料的混凝土梁裂缝损伤监测研究[J]. 振动与冲击, 2021, 40(21): 215-222. ZHANG Hao, LI Junjie, KANG Fei. Crack damage monitoring of concrete beam based on piezoelectric intelligent aggregate[J]. Journal of Vibration and Shock, 2021, 40(21): 215-222. [17] Singh I, Dev N, Pal S. Impedance based damage assessment of concrete under the combined effect of impact and temperature using different piezo configurations[J]. Sensors and Actuators A: Physical, 2022, 345: 113763. [18] Li Y, Ma Y L, Hu X B. Early-age strength monitoring of the recycled aggregate concrete using the EMI method[J]. Smart Materials and Structures, 2021, 30(05): 055017. [19] 王海峰, 严捍东. 混凝土智能骨料及其温度和力学性能研究[J]. 应用基础与工程科学学报, 2018, 26(03): 631-639. WANG Haifeng, YAN Handong. Study on smart aggregate ofconcrete and its temperature and mechanical properties[J]. Journal of Basic Science and Engineering, 2018, 26(03): 631-639. [20] Kong Q Z, Fan S L, Bai X L, et al. A novel embeddable spherical smart aggregate for structural health monitoring: part I. Fabrication and electrical characterization[J]. Smart Materials & Structures, 2017, 26(09): 095050. [21] Kong Q Z, Fan S L, Mo Y L, et al. A novel embeddable spherical smart aggregate for structural health monitoring: part II. Numerical and experimental verifications[J]. Smart Materials and Structures, 2017, 26(9): 095051. [22] Zhao S Y, Fan S L, Yang J, et al. A spherical smart aggregate sensor based electro-mechanical impedance method for quantitative damage evaluation of concrete[J]. Structural Health Monitoring, 2019, 19(05): 1560-1576. [23] Fan S L, Zhao S Y, Kong Q Z, et al. An embeddable spherical smart aggregate for monitoring concrete hydration in very early age based on electromechanical impedance method[J]. Journal of Intelligent Material Systems and Structures, 2021, 32(05): 537-548. [24] Yang Z Y, Gao W H, Li M L, et al. Monitoring and modeling the hydration of steel fibre-reinforced cement-based material in very early age[J]. Composite Structures, 2023, 311: 116780. [25] 杨子谦, 陈清军, 孙祥涛, 等. 基于混凝土植入式模块与数据融合的裂缝修复监测技术[J]. 振动与冲击, 2023, 42(08): 186-193. YANG Ziqian, CHEN Qingjun, SUN Xiangtao, et al. A technique for monitoring the process of repairing crack based on a concrete implantable module and a data fusion algorithm[J]. Journal of Vibration and Shock, 2023, 42(08): 186-193. [26] Gao W H, Li H N, Ho S C M. A Novel Embeddable Tubular Piezoceramics-Based Smart Aggregate for Damage Detection in Two-Dimensional Concrete Structures[J]. Sensors 2019, 19(07): 1501. [27] Xu H B, Wen L J, Wang J J, et al. Modeling and electromechanical performance of improved smart aggregates using piezoelectric stacks[J]. Journal of Physics D: Applied Physics, 2023, 56(05): 054002. [28] Wang J J, Li W J, Qin L, et al. Effects of electrodes and protective layers on the electromechanical characteristics of piezoelectric stack actuators[J]. Advanced Composites Letters, 2019, 28: 0963693519877419. [29] Zhang H, Li J J, Kang F. Real-time monitoring of humidity inside concrete structures utilizing embedded smart aggregates[J]. Construction and Building Materials, 2022, 331: 127317. [30] 聂光临, 包亦望, 田远, 等. 水泥砂浆弹性模量随温度的演化规律[J]. 材料导报, 2019, 33(02): 251-256. NIE Guanglin, BAO Yiwang, Tian Yuan, et al. Evolution of elastic modulus of cement mortar as a function of temperature[J]. Materials Reports, 2019, 33(02): 251-256. [31] 荆锐, 亢景付, 蒋元成. 温度升高20~50℃对混凝土弹性模量的影响探究[J]. 硅酸盐通报, 2016, 35(12): 4207-4211. JING Rui, KANG Jing-fu, JIANG Yuan-cheng. Influence of temperature rising by 20℃ to 50℃ on concrete elastic modulus[J]. Bulletin of the Chinese Ceramic Society, 2016, 35(12): 4207-4211. [32] 厉阳. 热-力-电多场作用下压电叠堆驱动器性能研究[D]. 南京:南京航空航天大学, 2020. [33] 李秀娟, 屈文忠, 效黎. 压电阻抗损伤识别温度影响的协整消除方法研究[J]. 振动与冲击, 2019, 38(18): 128-134. LI Xiujuan, QU Wenzhong, XIAO Li. Cointegration approach for the temperature effect compensation in EMI damage detection[J]. Journal of Vibration and Shock, 2019, 38(18): 128-134. [34] 张冲. 含水率对水泥砂浆力学特性影响的试验研究[D]. 泰安:山东农业大学, 2018. [35] 刘保东, 李鹏飞, 李林, 等. 混凝土含水率对强度影响的试验[J]. 北京交通大学学报, 2011, 35(01): 9-12. LIU Baodong, LI Pengfei, LI Lin, et al. Experimental study on influence of water content on concrete strength[J]. Journal of Beijing Jiaotong University, 2011, 35(01): 9-12. [36] Shen J R, Xu Q J. Effect of moisture content and porosity on compressive strength of concrete during drying at 105 °C[J]. Construction and Building Materials, 2019, 195: 19-27. [37] 王晓庆, 王珊珊, 冯竟竟, 等. 磨细粉煤灰对水泥基复合胶凝材料流变性能及硬化性能的影响[J]. 硅酸盐通报, 2015, 34(06): 1554-1558. WANG Xiao-qing, WANG Shan-shan, FENG Jing-jing, et al. Effect of ground fly ash on the fluidity and hardening properties ofcement based composite cementitious materials[J]. Bulletin of the Chinese Ceramic Society, 2015, 34(06): 1554-1558. [38] 周思屹. 大掺量粉煤灰对砂浆和混凝土性能影响的试验研究[D]. 郑州:华北水利水电大学,2020. [39] 周宏, 阎石, 孙威. 利用压电智能骨料对混凝土结构 损伤的识别研究[J]. 混凝土, 2009(04): 20-23. ZHOU Hong, YAN Shi, SUN Wei. Experimemtal research on damage detection of concrete structures using piezoelectric smart aggregates[J]. Concrete, 2009(04): 20-23. [40] 蔡金标, 李忠良, 楼旦丰, 等. 基于压电阻抗的混凝土裂缝深度发展定量研究[J]. 压电与声光, 2014, 36(01): 79-84. CAI Jinbiao, LI Zhongliang, LOUDanfeng, et al. Quantitative study on crack development in concrete based on EMI[J]. Piezoelectric & Acoustooptics, 2014, 36(01): 79-84. [41] Chen L, Xiong H B, Yang Z Q, et al. Preload measurement of steel-to-timber bolted joint using piezoceramic-based electromechanical impedance method[J]. Measurement, 2022, 190: 110725. [42] Luo W, Liu T J, Li W J, et al. Pitting corrosion prediction based on electromechanical impedance and convolutional neural networks[J]. Structural Health Monitoring, 2023, 22(03): 1647-1664. [43] Fan S L, Zhao S Y, Qi B X, et al. Damage Evaluation of Concrete Column under Impact Load Using a Piezoelectric-Based EMI Technique[J]. Sensors, 2018, 18(05): 1591. [44] Ai D M, Zhu H P, Luo H. Sensitivity of embedded active PZT sensor for concrete structural impact damage detection[J]. Construction and Building Materials, 2016, 111: 348-357. [45] Ai D M, Zhu H P, Luo H, et al. Mechanical impedance based embedded piezoelectric transducer for reinforced concrete structural impact damage detection: A comparative study[J]. Construction and Building Materials, 2018, 165: 472-483.

PDF(3464 KB)

389

Accesses

0

Citation

Detail

段落导航
相关文章

/