制动闸片摩擦块孔结构对盘-块界面粘滑振动的影响

王权1,2,王志伟1,2,莫继良1,2,范志勇1,2,周仲荣1,2

振动与冲击 ›› 2024, Vol. 43 ›› Issue (11) : 94-101.

PDF(2795 KB)
PDF(2795 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (11) : 94-101.
论文

制动闸片摩擦块孔结构对盘-块界面粘滑振动的影响

  • 王权1,2,王志伟1,2,莫继良1,2,范志勇1,2,周仲荣1,2
作者信息 +

Effects of hole structure of brake pad friction block on stick-slip vibration of disc-block interface

  • WANG Quan1,2, WANG Zhiwei1,2, MO Jiliang1,2, FAN Zhiyong1,2, ZHOU Zhongrong1,2
Author information +
文章历史 +

摘要

制动闸片摩擦块多采用孔结构以改善界面摩擦磨损行为及热分布特征。为进一步研究制动闸片摩擦块孔结构与盘–块界面粘滑振动特性的关系,通过开展摩擦学试验,分析了有孔和无孔摩擦块对界面粘滑振动的影响,并辨识了相应的Stribeck模型参数以描述盘–块界面间的摩擦系数特征。然后,建立了盘–块摩擦系统数值模型,基于辨识的Stribeck模型参数并结合理论分析,探讨了粘滑振动的关键影响因素,揭示了摩擦块孔结构对界面粘滑振动的作用机理。结果表明,摩擦系数–相对速度负斜率特征造成的负阻尼效应向系统输入能量,导致了系统的不稳定及粘滑振动。动、静摩擦系数的差值越大,负阻尼效应越强,系统粘滑振动强度及不稳定程度更高。相比无孔摩擦块,有孔摩擦块可通过孔结构调整界面摩擦特征,使动、静摩擦系数的差值减小,从而有效抑制界面粘滑振动强度,提高系统的稳定性。

Abstract

The perforated structure is widely adopted on the surface of the brake pad friction block to improve interfacial friction, wear behaviors and heat distribution characteristics. To further investigate the relationship between the perforated structure of the brake pad friction block and stick–slip vibration of the disc–block interface, in this research, the tribological experiments are conducted to analyze the stick–slip vibration respectively affected by perforated and unperforated friction blocks. The Stribeck model parameters are identified to characterize the coefficients of friction of the disc–block interface. Further, a numerical model of the disc–block friction system is constructed. Based on the identified Stribeck model parameters and the theoretical analysis, the key influence factors of stick–slip motion is discussed and the mechanism of the perforated structure of the friction block on stick–slip vibration is revealed. The results show that the negative damping effect generated from the negative friction–velocity slope continuously inputs energy into the disc–block friction system, causing the instability and stick–slip vibration of the system. A greater difference between the static and kinetic coefficients of friction results in a stronger negative damping effect, leading to more obvious stick–slip vibration and worse stability of the system. The difference between the static and kinetic coefficients of friction for the perforated friction block is less than that for the unperforated friction block through regulating the interfacial friction characteristics, thereby effectively reduces stick–slip vibration of the disc–block interface and improves the system stability.

关键词

摩擦块孔结构 / 粘滑振动 / Stribeck模型 / 参数辨识 / 稳定性

Key words

perforated structure of the friction block / stick–slip vibration / Stribeck model / parameter identification / stability

引用本文

导出引用
王权1,2,王志伟1,2,莫继良1,2,范志勇1,2,周仲荣1,2. 制动闸片摩擦块孔结构对盘-块界面粘滑振动的影响[J]. 振动与冲击, 2024, 43(11): 94-101
WANG Quan1,2, WANG Zhiwei1,2, MO Jiliang1,2, FAN Zhiyong1,2, ZHOU Zhongrong1,2. Effects of hole structure of brake pad friction block on stick-slip vibration of disc-block interface[J]. Journal of Vibration and Shock, 2024, 43(11): 94-101

参考文献

[1] 张艳龙, 唐斌斌, 王丽, 等. 动摩擦作用下含间隙碰撞振动系统的动力学分析[J]. 振动与冲击, 2017, 36(24): 58-63. ZHANG Yanlong, TANG Binbin, WANG Li, et al. Dynamic analysis for a vibro-impact system with clearance under kinetic friction[J]. Journal of Vibration and Shock, 2017, 36(24): 58-63. [2] 李小彭, 李加胜, 李木岩, 等. 盘式制动系统参数对制动颤振的影响分析[J]. 振动、测试与诊断, 2017, 37(1): 102-107+202. Li Xiaopeng, LI Jiasheng, LI Muyan, et al. Analysis of the effect of disc brake system parameters on brake chatter[J]. Journal of Vibration, Measurement & Diagnosis, 2017, 37(1): 102-107+202. [3] 王权, 王安宇, 吴元科, 等. 基于界面调控的摩擦系统减振降噪方法[J]. 振动与冲击, 2022, 41(15): 146-152. WANG Quan, WANG Anyu, WU Yuanke, et al. Vibration and noise reduction method of friction system based on interface regulation[J]. Journal of Vibration and Shock, 2022, 41(15): 146-152. [4] 刘丽兰, 刘宏昭, 吴子英, 等. 基于模态耦合的摩擦自激振荡系统稳定性研究[J]. 振动工程学报, 2009, 22(4): 363-370. LIU Lilan, LIU Hongzhao, WU Ziying, et al. Stability of mode-coupling self-excited oscillation systems with friction[J]. Journal of Vibration Engineering, 2009, 22(4): 363-370. [5] 项载毓, 范志勇, 刘启昂, 等. 高速列车制动闸片摩擦块形状对制动界面摩擦学行为的影响[J]. 摩擦学学报, 2021, 41(1): 95-104. XIANG Zaiyu, FAN Zhiyong, LIU Qiang, et al. Effect of brake pad friction block shape on tribological behavior of brake interface of high-speed train[J]. Tribology, 2021, 41(1): 95-104. [6] TANG B, MO J L, XU J W, et al. Effect of perforated structure of friction block on the wear, thermal distribution and noise characteristics of railway brake systems[J]. Wear, 2019, 426: 1176-1186. [7] 孙超, 高飞, 符蓉, 等. 制动闸片结构特征的表征方法研究[J]. 铁道机车车辆, 2012, 32(4): 49-54. SUN Chao, GAO Fei, FU Rong, et al. Research of structure characterization method of brake pad[J]. Railway Locomotive & Car, 2012, 32(4): 49-54. [8] ZHANG P, ZHANG L, WEI D B, et al. The synergistic effect of Cr and CrFe particles on the braking behavior of Cu-Based powder metallurgy brake pads[J]. Tribology Transactions, 2019, 62(6): 1072-1085. [9] WANG Q, WANG Z W, MO J L, et al. A novel dynamics model of a trailer bogie brake system and its application in stability analysis[J]. Mechanical Systems and Signal Processing, 2022, 172: 108966. [10] ZENG J, LUO R. Non-linear analysis of disc brake-induced vibrations for railway vehicles[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2011, 225: 48-56. [11] WANG Q, WANG Z W, MO J L. A hybrid friction-induced vibration form: Experimental measurement and mechanism discussion[J]. Tribology International, 2023, 108397. [12] 张立军, 吴军, 孟德建. 模态耦合及摩擦系数速度斜率与黏滑运动的关系[J]. 同济大学学报:自然科学版, 2015, 43(12): 1850-1859. ZHANG Lijun, WU Jun, MENG Dejian. Relationship among mode coupling, friction-velocity slope and stick-slip motion[J]. Journal of Tongji University (Natural Science), 2015, 43(12): 1850-1859. [13] DONG C L, MO J L, YUAN C Q, et al. Vibration and noise behaviors during stick-slip friction[J]. Tribology Letters, 2019, 67(4): 1-12. [14] 潘公宇, 冯雅琪, 刘朋,等. 基于盘-块间弹簧接触动力学模型的盘式制动器抖动改进设计[J]. 振动与冲击, 2022, 41(17): 244-253+291. PAN Gongyu, FENG Yaqi, LIU Peng, et al. Improved design of disc brake judder based on disc-block spring contact dynamic model[J]. Journal of Vibration and Shock, 2022, 41(17): 244-253+291. [15] PARK J S, LEE S M, Joo B S, et al. The effect of material properties on the stick–slip behavior of polymers: A case study with PMMA, PC, PTFE, and PVC[J]. Wear, 2017, 378-379: 11-16. [16] 隋鑫, 丁千. 接触刚度对制动摩擦块时域-频域响应的影响[J]. 振动与冲击, 2019, 38(8): 198-202. SUI Xin, DING Qian. Influences of contact stiffness on the time and frequency responses of a brake pad in a frictional sysetm[J]. Journal of Vibration and Shock, 2019, 38(8): 198-202. [17] WEI D G, SONG J W, NAN Y H, et al. Analysis of the stick-slip vibration of a new brake pad with double-layer structure in automobile brake system[J]. Mechanical Systems and Signal Processing, 2019, 118: 305-316. [18] 刘富豪, 蒋汉军, 朱龙英. 汽车盘式制动器稳定性及非线性动力学分析[J]. 振动工程学报, 2014, 27(6): 1-7. LIU Fuhao, JIANG Hanjun, ZHU Longying. Stability and nonlinear dynamics analysis of automotive disc brake[J]. Journal of Vibration Engineering, 2014, 27(6): 1-7. [19] 刘晓刚, 伍骏波. 基于模态耦合与负阻尼理论的啸叫噪声的研究[J]. 机械工程学报, 2022, 58(10): 254-264. LIU Xiaogang, Wu Junbo. Investigation of squeal noise based on mode coupling and negative damping theory[J]. Journal of Mechanical Engineering, 2022, 58(10): 254-264

PDF(2795 KB)

263

Accesses

0

Citation

Detail

段落导航
相关文章

/