平纹编织复合材料加筋壁板低速冲击及冲击后压缩性能多尺度分析

王维韩1, 侯玉亮1, 赵巧莉2, 刘雨桐3, 李成1

振动与冲击 ›› 2024, Vol. 43 ›› Issue (12) : 109-117.

PDF(2815 KB)
PDF(2815 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (12) : 109-117.
论文

平纹编织复合材料加筋壁板低速冲击及冲击后压缩性能多尺度分析

  • 王维韩1,侯玉亮1,赵巧莉2,刘雨桐3,李成1
作者信息 +

Multiscale modeling of the low-velocity impact and compression after impact behaviors of rib-stiffened plain woven composites

  • WANG Weihan1,HOU Yuliang1,ZHAO Qiaoli2,LIU Yutong3,LI Cheng1
Author information +
文章历史 +

摘要

本文通过构建平纹编织复合材料(Plain Woven Composites,PWC)的微/细/宏观多尺度模型,对复合材料T型和工型加筋壁板的低速冲击(Low-velocity Impact,LVI)和冲击后压缩(Compression After Impact,CAI)性能进行分析。根据PWC内部结构特征,构建微观和细观代表性体积单元(Representative Volume Element,RVE)模型,通过施加不同的载荷条件,预测其等效力学参数。同时,基于局部均匀化方法,将细观RVE模型转化为包含0°和90°子胞的等效交叉层合板(Equivalent Cross-ply Laminate,ECPL)胞元。通过ECPL胞元建立PWC加筋壁板的宏观分析模型,并进行LVI和CAI性能分析。首先进行了能量为8 J、10 J和12 J的LVI试验和多尺度模拟,研究了PWC加筋壁板在LVI载荷下的力学行为。随后,对不同能量冲击后的加筋壁板进行CAI试验和数值模拟,研究其冲击后压缩剩余力学性能和损伤行为。最后,通过对比分析不同能量冲击下的LVI和CAI试验和预测结果,发现多尺度模型对加筋壁板力学性能的预测误差均小于6%,验证了该多尺度模型的有效性。试验和预测结果表明,在CAI载荷作用下,PWC加筋壁板的蒙皮部分沿着冲击损伤的位置发生完全断裂,其中,纤维断裂和层间分层成为PWC加筋壁板的主要损伤形式。此外,工型加筋壁板表现出更好的抵抗压缩强度衰减能力。

Abstract

This study proposes multiscale models to investigate the low-velocity impact (LVI) and compression after impact (CAI) behaviors of plain woven composite (PWC) panels stiffened by T- and I-shaped ribs. Representative volume elements (RVEs) are constructed at the microscale and mesoscale to compute the effective properties of carbon-fiber yarns and PWC. Besides, in order to improve the computational efficiency without sacrificing the computational accuracy, an equivalent cross-ply laminate (ECPL) cell is introduced to represent the woven architecture using a local homogenization approach. Multiscale models of PWC panels stiffened by T- and I-shaped ribs are constructed to investigate the mechanical behavior and damage mechanisms. Initially, experimental and numerical tests with 8 J, 10 J and 12 J impact energies are performed to examine the LVI behavior of PWC rib-stiffened panels. Subsequently, the post-impact compressive behavior and properties are assessed by experimental and numerical CAI tests on these impacted panels. The dissimilarities between the experimental and numerical results are less than 6%, confirming the reliability of the proposed multiscale models. Moreover, the panels stiffened by I-shaped rib are found to exhibit better resistance to the compressive strength reduction due to LVI events. Besides, the primary damage modes of rib-stiffened PWC panels under LVI loads are matrix cracking and fiber breakage. In CAI cases, the existing impact damages are prone to lead to severe delamination within the rib-stiffened panels and accelerate final failure.

关键词

平纹编织复合材料 / 加筋壁板 / 多尺度模型 / 低速冲击 / 冲击后压缩

Key words

Plain woven composites / Rib-stiffened panel / Multiscale models / Low-velocity impact / Compression after impact

引用本文

导出引用
王维韩1, 侯玉亮1, 赵巧莉2, 刘雨桐3, 李成1. 平纹编织复合材料加筋壁板低速冲击及冲击后压缩性能多尺度分析[J]. 振动与冲击, 2024, 43(12): 109-117
WANG Weihan1, HOU Yuliang1, ZHAO Qiaoli2, LIU Yutong3, LI Cheng1. Multiscale modeling of the low-velocity impact and compression after impact behaviors of rib-stiffened plain woven composites[J]. Journal of Vibration and Shock, 2024, 43(12): 109-117

参考文献

[1] 杜善义. 先进复合材料与航空航天[J]. 复合材料学报, 2007, 24(1): 1-12. Du Shanyi. Advanced composite materials and aerospace engi-neering[J]. Acta Materiae Compositae Sinica, 2007, 24(1): 1-12. [2] Bahar E, Ucar N, Onen A, et al. Thermal and mechanical prop-erties of polypropylene nanocomposite materials reinforced with cellulose nano whiskers[J]. Journal of Applied Polymer Science, 2012, 125(4): 2882-2889. [3] Yin S, Yu T, Bui T Q, et al. In-plane material inhomogeneity of functionally graded plates: A higher-order shear deformation plate isogeometric analysis[J]. Composites Part B: Engineering, 2016, 106: 273-284. [4] 王富生, 张钧然, 郑涵天, 等. 复合材料加筋壁板鸟撞动响应分析[J]. 振动与冲击, 2013,32(4):6-9,20. Wang Fusheng,Zhang Junran,Zheng Hantian, et al. Dynamic response of a composite reinforced panel to bird Strike [J]. Journal of Vibration and Shock, 2013,32(4):6-9,20. [5] Greenhakgh E, Hiley M. The assessment of novel materials and processes for the impact tolerant design of stiffened composite aerospace structures[J]. Composites Part A: Applied Science and Manufacturing, 2003, 34(2): 151-161. [6] 王涛, 侯玉亮, 铁瑛, 等. 基于ECPL模型的平纹机织复合材料低速冲击多尺度模拟[J]. 振动与冲击, 2020,39(20):295-304. Wang Tao, Hou Yuliang, Tie ying, et al. Multi-scale simulation of low-Velocity impact on plain woven composites based on an ECPL model[J]. Journal of Vibration and Shock, 2020,39(20):295-304. [7] Im K H, Cha C S, Kim S K, et al. Effects of temperature on impact damages in CFRP composite laminates[J]. Composites Part B: Engineering, 2001, 32(8): 669-682. [8] 孙李刚, 凌超, 陈浩, 等. 结构完整性分析中的多尺度力学方法. 机械工程学报, 2021, 57(16), 106-121. Sun Ligang, Ling Chao, Chen Hao, et al. Application of Multiscale Mechanics Methods in Structural Integrity Analysis[J]. Journal of Mechanical Engineering, 2021, 57(16), 106-121. [9] Ren W, Zhou X H, Fu Z L, et al. Static behavior of large-diameter stiffened steel tubes for wind turbine towers under combined compression-bending-torsion load[J]. Thin-Walled Structures, 2022, 175: 109272. [10] 张铁军, 李曙林, 常飞, 等. 多损伤复合材料加筋壁板高周疲劳特性及剩余压缩强度[J]. 复合材料学报, 2015, 32(6): 1754-1761. Zhan Tiejun, Li Shulin, Chang Fei, et al. High cycle fatigue char-acteristics and residual compressive strength of composite stiffened panels with multi-damage[J]. Acta Materiae Compositae Sinica, 2015, 32(6): 1754-1761. [11] 万玉敏, 张发, 刘长喜, 等. 飞机典型薄壁复合材料夹层结构整体屈曲[J]. 复合材料学报, 2018, 35(8): 2235-2245. Wan Yumin, Zhang Fa, Liu Changxi, et al. Overall buckling of typical thin-wall sandwich composites applied on the aircraft[J]. Acta Materiae Compositae Sinica, 2018, 35(8): 2235-2245. [12] Kolanu N R, Raju G, Ramji M. Experimental and numerical studies on the buckling and post-buckling behavior of single blade-stiffened CFRP panels[J]. Composite Structures, 2018, 196: 135-154. [13] Hou Y L, Wang W H, Meng L, et al. An insight into the me-chanical behavior of adhesively bonded plain-woven-composite joints using multiscale modeling[J]. International Journal of Me-chanical Sciences, 2022, 219: 107063. [14] 邵青, 何宇廷, 张腾, 等. 复合材料加筋板低速冲击损伤及剩余压缩强度试验研究[J]. 复合材料学报, 2014, 31(1): 200-206. Shao Qing, He Yuting, Zhan Teng, et al. Experimental research on low-velocity impact and residual compressive strength of composite stiffened panels[J]. Acta Materiae Compositae Sinica, 2014, 31(1): 200-206. [15] Davis D C, Wilkerson J W, Zhu J, et al. Improvements in me-chanical properties of a carbon fiber epoxy composite using nano-tube science and technology[J]. Composite Structures, 2010, 92(11): 2653-2662 [16] Li Q, Qu Y, Lou Y, et al. Concurrent topology optimization design of stiffener layout and cross-section for thin-walled struc-tures[J]. Acta Mechanica Sinica, 2021, 37: 472-481. [17] Cui J, Su Z, Zhang W, et al. Buckling optimization of non-uniform curved grid-stiffened composite structures (NCGCs) with a cutout using conservativeness-relaxed globally convergent method of moving asymptotes[J]. Composite Structures, 2022, 280: 114842. [18] Tan P, Tong L, Sun X. Effective properties for plain weave composites through-thickness reinforced with carbon nanotube forests[J]. Composite Structures, 2008, 84(1): 1-10. [19] Kong C W, Hong C S, Kim C G. Postbuckling strength of stiffened composite plates with impact damage[J]. AIAA Journal, 2000, 38(10): 1956-1964. [20] Salehghaffari S, Rais-Rohani M, Najafi A. Analysis and opti-mization of externally stiffened crush tubes[J]. Thin-walled struc-tures, 2011, 49(3): 397-408. [21] Hao P, Wang B, Li G, et al. Hybrid optimization of hierarchical stiffened shells based on smeared stiffener method and finite element method[J]. Thin-Walled Structures, 2014, 82: 46-54. [22] Cheng X, Gong Y, Liu Y, et al. Prediction of residual me-chanical properties in flexure-after-impact of woven composite beams through electrical resistance measurement[J]. Composite Structures, 2020, 240: 112066. [23] Caputo F, Esposito R, Perugini P, et al. Numerical–experimental investigation on post-buckled stiffened composite panels[J]. Composite Structures, 2002, 55(3): 347-357. [24] Patel S N, Datta P K, Sheikh A H. Buckling and dynamic in-stability analysis of stiffened shell panels[J]. Thin-walled structures, 2006, 44(3): 321-333. [25] 皮晓璠,铁瑛,胡明浩. 基于多尺度分析的平纹机织复合材料贴补结构抗冲击性能研究[J]. 振动与冲击, 2022,41(19):188-197. Pi Xiaofan, Tie ying, Hu Minghao. Anti-impact performance of plain woven composite patching structure based on multi-scale analysis[J]. Journal of Vibration and Shock 2022,41(19):188-197. [26] Patnaik G, Kaushik A, Rajput A, et al. Ballistic performance of quasi-isotropic CFRP laminates under low velocity impact[J]. Journal of Composite Materials, 2021, 55(24): 3511-3527. [27] 罗书舟, 陈超, 伍乾坤, 等. 复合材料单搭接胶接接头低速冲击数值模拟[J]. 振动与冲击, 2019,38(1):142-148,186. Luo Shuzhou, Chen Chao, Wu Qiankun, et al. Numerical simulation for low velocity impact performances of composite laminates single-lap adhesively bonded joints[J]. Journal of Vibration and Shock, 2019,38(1):142-148,186. [28] Li H, Bacarreza O, Khodaei Z S, et al. Probabilistic multi-scale design of 2D plain woven composites considering meso-scale uncertainties[J]. Composite Structures, 2022, 300: 116099. [29] Li H, Khodaei Z S, Aliabadi M H F. Multiscale modelling of material degradation and failure in plain woven composites: A novel approach for reliable predictions enabled by meta-models[J]. Composites Science and Technology, 2023, 233: 109910. [30] ASTM D7136/D7136M-20, Standard Test Method for Meas-uring the Damage Resistance of a Fiber-reinforced Polymer Matrix Composite to a Drop-weight Impact Event[M]. ASTM International, 2020. [31] ASTM D7264/D7264M-15, Standard test method for flexural properties of polymer matrix composite materials, ASTM Interna-tional, 2015. [32] Zhao Z, Dang H, Zhang C, et al. A multi-scale modeling framework for impact damage simulation of triaxially braided composites[J]. Composites Part A: Applied Science and Manufac-turing, 2018, 110: 113-125. [33] Hashin Z. Failure criteria for unidirectional fiber composite[J]. Journal of Applied Mechanics, 1980, 47: 3292334. [34] Zhao Q, Wang W, Liu Y, et al. Multiscale modeling framework to predict the low-velocity impact and compression after impact behaviors of plain woven CFRP composites[J]. Composite Structures, 2022, 299: 116090. [35] Jiang H, Ren Y, Zhang S, et al. Multi-scale finite element analysis for tension and ballistic penetration damage characterizations of 2D triaxially braided composite[J]. Journal of Materials Science, 2018, 53: 10071-10094.

PDF(2815 KB)

212

Accesses

0

Citation

Detail

段落导航
相关文章

/