转子运动条件下光纤光栅的扫描光谱特性及测温误差研究

陈思彤1, 黄俊斌1, 刘文1, 李哲宇2, 顾宏灿1, 姚高飞1

振动与冲击 ›› 2024, Vol. 43 ›› Issue (12) : 17-29.

PDF(2771 KB)
PDF(2771 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (12) : 17-29.
论文

转子运动条件下光纤光栅的扫描光谱特性及测温误差研究

  • 陈思彤1,黄俊斌1,刘文1,李哲宇2,顾宏灿1,姚高飞1
作者信息 +

Fiber Bragg grating scanning spectral characteristics and temperature measurement error under rotor whirling conditions

  • CHEN Sitong1,HUANG Junbin1,LIU Wen1,LI Zheyu2,GU Hongcan1,YAO Gaofei1
Author information +
文章历史 +

摘要

针对基于空间耦合传输方法的电机转子温度监测系统,采用光纤光栅的传输矩阵理论和自聚集透镜的耦合传输理论,建立了转子运动条件下光纤光栅(fiber Bragg grating,FBG)的扫描光谱模型,首先研究了扫描光谱的畸变规律及各算法的寻峰效果,结果表明:转子的涡动导致FBG扫描光谱的反射峰发生偏移、3dB带宽减小,随着耦合损耗与原始反射峰之间的相位差发生变化,中心波长的最大扫描误差以类似正弦函数的规律发生变化,新反射峰位置由耦合损耗变化速率、FBG原始反射率及其变化速率之间的限定关系决定。协调解调仪扫描速率与转子涡动频率之间的数值关系是减轻光谱畸变的主要方法;此外,相比于半峰法和多种拟合型算法,质心法通过提取畸变光谱的重心也明显地减小了中心波长的扫描误差。然后,通过理论和试验研究了转子涡动频率与解调仪扫描频率对系统测温误差产生的影响,结果表明:随着耦合损耗周期与光谱扫描时间之比(q值)的增加,系统的最大测温误差先剧烈地减小、然后缓慢减小至稳定,令q>10是确保系统的测温误差及其波动较小的最低条件;对于转速小于200000rpm的转子(涡动频率小于1667Hz),当转子径向振动的幅值小于200μm、轴心轨迹的轴比小于3、轴心线偏转的角度小于0.1°时,采用扫描频率大于760Hz的解调仪和质心寻峰法可以保证涡动引起的测温误差小于0.3℃,为转子测温系统的实际应用及测温误差的预估提供了依据。

Abstract

For the motor rotor temperature monitoring system based on the spatial coupled transmission method, the scanning spectral model of fiber Bragg grating (FBG) on the whirling rotor is established. The distortion law of the scanning spectra and the peak-finding results of each algorithm are firstly investigated. The results show that the whirling rotor leads to the shift of the reflection peaks and the reduction of the 3dB bandwidth in the scanning spectra of the FBG. The maximum scanning error of the center wavelength changes with a sinusoidal function as the phase difference between the coupling loss and the original reflection peaks changes. The position of the new reflectance peak is determined by the limiting relationship between the rate of change of the coupling loss, the original FBG reflectance and change rate. Coordinating the numerical relationship between the scanning rate of the demodulator and the frequency of the rotor whirl is the main method to mitigate spectral aberration. In addition, compared with the half-peak method and various fitting-type algorithms, the centroid method also significantly reduces the scanning error at the center wavelength. Then, the effects of the rotor whirl frequency and the demodulator scanning frequency on the system temperature measurement error are investigated by theory and experiment. The results show that the maximal temperature measurement error firstly decreases drastically, and then decreases slowly, and finally stays stable, with the increase of the ratio of the coupling loss period to the spectral scanning time (q-value). q>10 is the minimum condition to ensure that the system's temperature measurement error and its fluctuation are small. For rotor speed less than 200000rpm (whirl frequency less than 1667Hz), when the amplitude of the rotor radial vibration is less than 200μm, the axial ratio of the axial trajectory is less than 3, and the angle of axial line deflection is less than 0.1°, the use of a scanning frequency greater than 760Hz demodulator and the centroid method can ensure that the whirl induced temperature measurement error is less than 0.3 ℃. This paper provides a basis for the practical application of the rotor temperature monitoring system and the prediction of the temperature measurement error.

关键词

光纤光栅(FBG)传感器 / 转子温度监测系统 / 转子运动 / 畸变光谱 / 寻峰误差

Key words

fiber Bragg grating(FBG) sensors / rotor temperature monitoring system / rotor whirling / distorted spectrum / measurement error

引用本文

导出引用
陈思彤1, 黄俊斌1, 刘文1, 李哲宇2, 顾宏灿1, 姚高飞1. 转子运动条件下光纤光栅的扫描光谱特性及测温误差研究[J]. 振动与冲击, 2024, 43(12): 17-29
CHEN Sitong1, HUANG Junbin1, LIU Wen1, LI Zheyu2, GU Hongcan1, YAO Gaofei1. Fiber Bragg grating scanning spectral characteristics and temperature measurement error under rotor whirling conditions[J]. Journal of Vibration and Shock, 2024, 43(12): 17-29

参考文献

[1] 马伟明, 鲁军勇. 电磁发射技术的研究现状与挑战[J]. 电工技术学报, 2023, 38(15): 3943-3959. MA Weiming, LU Junyong. Research Progress and Challenges of Electromagnetic Launch Technology[J]. Transactions of China Electrotechnical Society, 2023, 38(15): 3943-3959. [2] 马伟明, 鲁军勇, 李湘平. 电磁发射超高速一体化弹丸[J]. 国防科技大学学报, 2019, 41(04): 1-10. MA Weiming, LU Junyong, LI Xiangping. Electromagnetic launch hypervelocity integrated projectile[J]. Journal of National University of Defense Technology, 2019, 41(04): 1-10. [3] 刘阳, 余中军, 张贤彪. 大容量高速永磁电机热流场仿真及参数敏感性分析[J]. 电机与控制应用, 2018, 45(03): 103-107. LIU Yang, YU Zhongjun, ZHANG Xianbiao. Analysis of Thermal and Flow Fields for Large-Capacity High Speed Permanent Magnet Machine and Parameters Sensitivity Analysis[J]. Electric Machines & Control Application, 2018, 45(03): 103-107. [4] 卓亮, 孙鲁, 施道龙, 等. 考虑温度变化的高温高速永磁电机转子涡流损耗半解析模型及实验验证[J]. 中国电机工程学报, 2021, 41(24): 8305-8315. ZHUO Liang, SUN Lu, SHI Daolong, et al. Semi-analytical Model and Experimental Verification of Rotor Eddy Current Loss of High Temperature High Speed Permanent Magnet Machine Considering Temperature Change[J]. Proceedings of the CSEE, 2021, 41(24): 8305-8315. [5] 梁得亮, 褚帅君, 贾少锋, 等. 高温高速永磁电机关键技术研究综述[J]. 西安交通大学学报, 2022, 56(10): 31-48. LIANG Deliang,CHU Shuaijun, JIA Shaofeng, et al. Overview of research on key trchnology of high-temperature and high-speed permanentmagnet machine[J].Journal of Xi'an Jiaotong University, 2022, 56(10): 31-48. [6] KOVACIC M, VRAZIC M, GASPARAC I. Bluetooth wireless communication and 1-wire digital temperature sensors in synchronous machine rotor temperature measurement[C]. Proceedings of 14th International Power Electronics and Motion Control Conference EPE-PEMC, Ohrid, Macedonia, 2010: T7-25-T7-28. [7] 李统. 永磁同步电机转子温度场计算与测量[D]. 浙江: 浙江大学, 2017: 37-48. LI Tong. Prediction and Measurement of Rotor Temperature Distribution of Permanent Magnet Synchronous Motor[D]. Zhejiang: Zhejiang University, 2017: 37-48. [8] BERNARDIS P D, COLμmBRO F, MASI S, et al. A simple method to measure the temperature and levitation height of devices rotating at cryogenic temperatures[J]. Review of Scientific Instrμments, 2020, 91(4): 045118. [9] MOISE M V, PANTAZICA M, NEDELCU B S. Implementation of a Wireless Measuring and Data Acquisition System for Hydro-generator Monitoring[C]. 2022 IEEE 28th International Symposiμm for Design and Technology in Electronic Packaging (SIITME), 2022. [10] BENARRAIT R, LAMARQUE F, TERRIEN J, et al. Optical Power Supply of a Wireless Temperature Sensor for Rotating Machines Monitoring Purpose[C]. Instrumentation and Measurement Technology Conference, Glasgow, United Kingdom, 2021: 1-6. [11] CHESHIRE C, AMMANN U, GLIESE F, et al. Wireless Rotor Temperature Measurement System Based on Bluetooth Low Energy and Electric Field Power Harvesting [C]. European Conference on Power Electronics and Applications, Ghent, Belgium, 2021:1-10. [12] RUAN J, DENG Y, QUAN Y, et al. Inversion Detection of Transformer Transient Hot Spot Temperature[J]. IEEE Access, 2021, 9: 7751-7761. [13] CHEN S T, HUANG J B, LIU W. Spectrum characteristics and temperature measurement error of FBG sensor based on rotor temperature monitoring system[J]. Optical Fiber Technology,2023, 78(7-8):103306. [14] LIU Y, YIN J, FAN X, et al. Distributed temperature detection of transformer windings with externally applied distributed optical fiber[J]. Applied Optics, 2019, 58(29):7962. [15] HIND D, GERADA C, GALEA M, et al. Use of optical fibres for multi-parameter monitoring in electrical AC machines[C]. 2017 IEEE 11th International Symposiμm on Diagnostics for Electrical Machines, Power Electronics and Drives (SDEMPED), Tinos, Greece, 2017: 208-212. [16] MATTHIAS F, MARTIN H D, CHRIS G, et al. Comprehensive monitoring of electrical machine parameters using an integrated fiber bragg grating-based sensor system[J]. Journal of Lightwave Technology, 2018, 36(4): 1046-1051. [17] MOHAMMED A, DJUROVIC S. Rotor condition monitoring using fibre optic sensing technology[C]. The 10th International Conference Proceedings on Power Electronics, Machines and Drives, Piscataway: IEEE publisher, 2021: 1-7. [18] ABBOUD R. Non-contact temperature measurement method integrated in the rotor of a rotating machine using fiber Bragg gratings[D]. Université de Technologie de Compiègne, Université Libanaise, 2022: 24-36. [19] 程文杰, 邓志凯, 肖玲, 等. 三瓦双向箔片轴承-高速电机转子系统动力学研究[J]. 振动与冲击, 2021, 40(01): 218-225. CHENG Wenjie, DENG Zhikai, XIAO Ling, et al. Dynamic characteristics of a rotor system with 3-pad bidirectional GFB and high speed motor[J]. Journal of Vibration and Shock, 2021, 40(01): 218-225. [20] 文丰, 张岩, 贾兴中. 基于F-P可调谐滤波器的光纤光栅解调系统设计[J]. 电子测量技术, 2022, 45(09): 38-43. WEN Feng, ZHANG Yan, JIA Xing-zhong. Design of fiber grating demodulation system based on F-P tunablefilte[J]. Electronic Measurement Technology, 2022, 45(09): 38-43. [21] 王峰, 吴志强, 李亚杰. 电磁激励下开关磁阻电机转子的弯曲振动分析[J]. 振动与冲击, 2018, 37(18): 243-250. WANG Feng, WU Zhiqiang, LI Yajie. Bending vibration analysis of a SRM rotor under electromagnetic excitation[J]. Journal of Vibration and Shock, 2018, 37(18): 243-250. [22] 刘锋, 刘辉, 项昌乐, 等. 基于多尺度法的电机转子在不平衡磁拉力作用下的自由振动特性分析[J]. 机械工程学报, 2017, 53(16):52-60. LIU Feng, LIU Hui, XIANG Changle, et al. Influence of Unbalanced Magnetic Pull on Free Vibration Characteristics of Motor Rotor Based on Multi-scale Method[J]. Journal of Mechanical Engineering, 2017, 53(16):52-60. [23] 刘其洪, 叶聪, 李伟光, 等. 基于LabVIEW的轴心轨迹故障自动识别系统[J]. 中国测试, 2018, 44(04): 69-74. LIU Qi-hong, YE Cong, LI Wei-guang, et al. Automatic recognition system based on LabVIEW shaft orbit fault[J]. China Measurement & Test, 2018, 44(04): 69-74. [24] 宋巍, 谢友金, 李治国, 等. 基于光纤旋转连接器的光纤耦合效率研究[J]. 光子学报, 2022, 51(11): 104-115. SONG Wei, XIE You-jin, LI Zhi-guo, et al. Research on Coupling Efficiency Based on Fiber Optic Rotary Joints[J]. Acta Photonica Sinica, 2022, 51(11): 104-115. [25] 魏莉, 李恒春. 单通道单模光纤高速旋转连接器的研制[J]. 光通信技术, 2021, 45(07): 37-40. WEI Li, LI Hengchun. Development of single channel single mode fiber high speed rotary joint[J]. Optical Communication Technology, 2021, 45(07): 37-40. [26] 张自嘉. 光纤光栅理论基础与传感技术[M]. 北京: 科学出版社, 2009. ZHANG Zi-jia. Fundamentals of fiber Bragg grating theory and sensing technology[M]. Beijing: Science Press, 2009. [27] 起俊丰, 钟祝强, 王广娜, 等. 高斯切趾型光纤布拉格光栅外腔半导体激光器的混沌输出特性[J]. 物理学报, 2017, 66(24): 102-109. QI Jun-feng, ZHONG Zhu-qiang, WANG Guang-na, et al.Characteristics of chaotic output from a Gaussian apodized fiber Bragg grating external-cavity semiconductor laser[J]. Acta Physica Sinica, 2017, 66(24): 102-109. [28] 陈志军, 白剑, 吴祖堂, 等. 光纤布喇格光栅反射谱寻峰算法优化及比较[J]. 光子学报, 2015, 44(11): 83-88. CHEN Zhijun, BAI Jian, WU Zutang, et al. Optimization and comparision of the peak-detection algorithms for the reflectionspectrum of fiber Bragg grating. Acta Photonica Sinica, 2015, 44(11): 83-88. [29] 刘泉, 蔡林均,李政颖, 等. 高速度高精度光纤布拉格光栅解调的寻峰算法研究[J]. 光电子.激光, 2012, 23(07): 1233-1239. LIU Quan, CAI Linjun, LI Zhengling, et al. Research on peak-detection algorithm for high-speed and high-precision on FBG demodulation[J]. Journal of Optoelectronics•Laser, 2012, 23(07): 1233-1239. [30] 袁靖超, 赵江山, 李慧, 等. 基于准分子激光绝对波长校准的寻峰算法研究[J]. 中国激光, 2018, 45(07): 19-25. YUAN Jingchao, ZHAO Jiangshan, LI Hui, et al. Research of Peak-Detection Algorithm Based on Absolute Wavelength Calibration of Excimer Laser[J]. Chinese Journal of Lasers, 2018, 45(07): 19-25. [31] 余有龙, 王雪微, 王浩. 不同采样方式下光纤布喇格光栅反射谱寻峰算法的分析[J]. 光子学报, 2012, 41(11): 1274-1278. YU You-long, WANG Xue-wei, WANG Hao. Analysis of peak-detection algorithms in fiber Bragg grating by different sampling methods[J]. Acta Photonica Sinica, 2012, 41(11): 1274-1278. [32] 韩超, 胡宾鑫, 朱峰, 等. 光纤光栅高精度解调算法研究进展综述[J]. 激光与光电子学进展, 2022, 59(13): 52-64. HAN Chao, HU Bin-xing, ZHU Feng. Review on Progress of High-Precision Demodulation Algorithm of Fiber Bragg Grating[J].Laser & Optoelectronics Progress,2022, 59(13): 52-64.

PDF(2771 KB)

Accesses

Citation

Detail

段落导航
相关文章

/