基于高斯混合模型的物流非高斯随机振动损伤分析

郭涛1, 葛长风2, 夏斯璇1, 殷诚1, 林康1, 钱静1, 3

振动与冲击 ›› 2024, Vol. 43 ›› Issue (12) : 203-211.

PDF(1905 KB)
PDF(1905 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (12) : 203-211.
论文

基于高斯混合模型的物流非高斯随机振动损伤分析

  • 郭涛1,葛长风2,夏斯璇1,殷诚1,林康1,钱静1,3
作者信息 +

Non-Gaussian random vibration damage analysis of logistics based on a Gaussian mixture model method

  • GUO Tao1,GE Changfeng2,XIA Sixuan1,YIN Cheng1,LIN Kang1,QIAN Jing1,3
Author information +
文章历史 +

摘要

针对公路运输环境中的振动信号具有明显的非高斯性,提出一种非高斯随机振动疲劳损伤分析方法。为了描述振动信号的幅值概率密度分布,采用移动加速度均方根来代表该段信号的振动强度,并引入高斯混合模型对加速度均方根值进行描述。在此基础上结合Tovo-Benasciutti方法和Dirlik方法推导出非高斯宽带频域疲劳损伤计算方法。最后,以雨流计数法作为参考,对不同峭度的实测振动信号进行疲劳损伤分析,结果表明,与传统频域疲劳损伤计算方法相比较,提出的非高斯疲劳损伤方法具有更高的计算精度。该研究对于运输包装件的随机振动加速试验设计有实际意义。

Abstract

Aiming at the obvious non-Gaussian property of vibration signals in transportation environment, a non-Gaussian random vibration damage analysis method based on Gaussian mixture model is proposed. To describe the amplitude probability density distribution of the vibration signal, the moving root mean square of acceleration is introduced to represent the vibration intensity of the signal, and the Gaussian mixture model is used to describe the probability density distribution of root mean square of acceleration. On this basis, combined with Tovo-Benasciutti method and Dirlik method, a non-Gauss broadband frequency domain fatigue damage calculation method is derived. Finally, the fatigue damage analysis of measured vibration signals with different kurtosis is carried out with rain flow counting method as a reference. The results show that compared with traditional fatigue damage calculation methods in frequency domain, the calculation accuracy of the proposed non-Gaussian fatigue damage method is significantly improved.

关键词

非高斯随机振动 / 高斯混合模型 / 概率密度函数 / 运输包装

Key words

non-Gaussian random vibration / gaussian mixture model / Probability density function / logistics packaging

引用本文

导出引用
郭涛1, 葛长风2, 夏斯璇1, 殷诚1, 林康1, 钱静1, 3. 基于高斯混合模型的物流非高斯随机振动损伤分析[J]. 振动与冲击, 2024, 43(12): 203-211
GUO Tao1, GE Changfeng2, XIA Sixuan1, YIN Cheng1, LIN Kang1, QIAN Jing1, 3 . Non-Gaussian random vibration damage analysis of logistics based on a Gaussian mixture model method[J]. Journal of Vibration and Shock, 2024, 43(12): 203-211

参考文献

[1] ZHOU H, WANG ZW. Measurement and analysis of vibration levels for express logistics transportation in South China[J]. Packaging Technology and Science, 2018, 31(10): 665-678. [2] HARI L R. Spectral moment segmentation and spectrogram synthesis for simulation of road vehicle vibrations[J]. Mechanical Systems and Signal Processing, 2022, 180. [3] FEI X, KJELL A, BINYIN W. Optimization of damage equivalent accelerated test spectrum derivation using multiple non-Gaussian vibration data[J]. Journal of Sensors, 2021, 2021. [4] YUZHU W, ROGER S. Vibration fatigue damage estimation by new stress correction based on kurtosis control of random excitation loadings[J]. Sensors, 2021, 21(13): 4518. [5] MUÑIZ-CALVENTE M, ÁLVAREZ-VÁZQUEZ A, PELAYO F, et al. A comparative review of time- and frequency-domain methods for fatigue damage assessment[J]. International Journal of Fatigue, 2022, 163. [6] DIRLIK T. Application of computers in fatigue damage analysis[D]. Coventry: The University of Warwick, 1985. [7] BENASCIUTTI D, TOVO R. Comparison of spectral methods for fatigue analysis of broad-band gaussian random process[J]. Probabilistic Engineering Mechanics, 2006, 21(4): 287-299. [8] Garcia F, Aenlle M, Alvarez-Vazuez A, et al. A review on fatigue monitoring of structures[J]. International Journal of Structural Integrity. 2023, 14(2): 133-165. [9] WINTERSTEIN S R. Moment-based Hermite models of random vibration[D]. Lyngby: Department of Structural Engineering, Technical University of Denmark, 1987. [10] KIHL D P, SARKANI S, BEACH J E. Stochastic fatigue damage accumulation under broadband loadings[J]. International Journal of Fatigue, 1995, 17(5): 321-329. [11] WANG J. Non-gaussian stochastic dynamic response and fatigue of offshore structures[M]. Texas: Texas A&M University, 1992. [12] ROUILLARD V, SEK M. Analysis and simulation of load profiles[J]. Journal of Transportation Engineering, 1996, 122(3): 241-245. [13] WANG ZHIWEI, WANG LIJUN. On accelerated random vibration testing of product based on component acceleration RMS-life curve[J]. Journal of Vibration and Control ,2018, 24(15): 3384-3399. [14] WANG LIJUN, LAI YANGZHOU, WANG ZHIWEI. Fatigue failure and Grms-N curve of corrugated paperboard box[J]. Journal of Vibration and Control, 2020, 26(11-12): 1028-1041. [15] ZHOU H, WANG ZHIWEI. A new approach for road-vehicle vibration simulation[J]. Packaging Technology and Science, 2018, 31(5): 246-260. [16] BENASCIUTTI D, TOVO R. Fatigue life assessment in non -Gaussian random loadings[J]. International Journal of Fatigue, 2006, 28(7): 733-746. [17] GAO Z, MOAN T. Fatigue damage induced by non-Gaussian bimodal wave loading in mooring lines [J]. Applied Ocean Research, 2007, 29(1-2): 45-54. [18] FERNANDO I, FEI J G, STANLEY R. Measurement and evaluation of the effect of vibration on fruits in transit-Review[J]. Packaging Technology and Science, 2018, 31(11): 723-738. [19] 王志伟, 刘 博, 王立军. 基于Grms-N的非高斯加速随机振动理论方法的有限元验证[J]. 应用力学学报, 2020, 37(6): 2386-2394. WANG Zhiwei , LIU Bo, WANG Lijun. Finite element verification of non-Gaussian accelerated random vibration theory based on Grms-N curve[J]. Chinese Journal of Applied Mechanics, 2020, 37(6): 2386-2394. [20] 路冰琳, 谢增强, 魏 娜, 等. 随机振动高斯分布与非高斯分布激振对电脑一体机商品运输包装影响的研究[J]. 中国包装, 2022, 42(01): 22-26. LU Binglin, XIE Zengqiang, WEI Na, et al. Study on the influence of random vibration gaussian distribution and non-Gaussian distribution excitation on the transportation and packaging of computer integrated machine[J]. China Packaging, 2022, 42(01): 22-26. [21] 付秋莹, 方文康, 张晓龙, 等. 随机振动高斯分布与非高斯分布激振对瓶装水商品运输包装影响的研究[J]. 中国包装, 2021, 41(11): 25-30. FU Qiuying, FANG Wenkang, ZHANG Xiaolong, et al. Study on the influence of random vibration excitation with gaussian distribution and non-Gaussian distribution on transportation packaging of bottled water[J]. China Packaging, 2021, 41(11): 25-30. [22] 程红伟, 陶俊勇, 蒋 瑜, 等. 基于高斯混合模型的非高斯随机振动幅值概率密度函数[J]. 振动与冲击, 2014, 33(5): 115-119. CHENG Hongwei, TAO Junyong, JIANG Yu, et al. Amplitude probability density functions for non-Gaussian random vibrations based on a Gaussian mixture model[J]. Journal of Vibration and Shock, 2014, 35(5): 115-119. [23] 朱帅康, 董龙雷, 官 威, 等. 基于高斯混合模型的非高斯振动疲劳频域求解方法[J]. 振动与冲击, 2022, 41(16): 93-99. ZHU Shuaikang, DONG Longlei, GUAN Wei, et al. A frequency method for fatigue life estimation under non-Gaussian random loading based on a Gaussian mixture model[J]. Journal of Vibration and Shock, 2022, 41(16): 93-99. [24] DAVID O. Generating non-Gaussian vibration for testing purposes [J]. Sound and Vibration, 2005, 39(10): 18-24. [25] LEPINE J, ROUILLARD V, SEK, M. Review paper on road vehicle vibration simulation for packaging testing purposes[J]. Packaging Technology and Science, 2015, 28(8): 672-682. [26] 杨 鉴, 普圆媛, 梁 虹. 随机信号处理原理与实践: 第二版[M]. 北京: 科学出版社, 2020. [27] 王立军, 宋海燕, 王志伟. 运输包装加速随机振动试验研究综述[J]. 振动与冲击, 2022, 41(8): 277-286, 296. WANG Lijun, SONG Haiyan, WANG Zhiwei. A review on an accelerated random vibration test of transport packaging[J]. Journal of Vibration and Shock, 2022, 41(8): 277-286, 296. [28] 杨松平, 王志伟. 运输包装随机振动的加速度响应谱分析[J]. 振动与冲击, 2023, 42(16): 37-16. YANG Songping, WANG Zhiwei. Acceleration spectrum analysis for transport packaging under random vibration [J]. Journal of Vibration and Shock, 2023, 42(16): 37-16. [29] GRIFFITHS K, SHIRES D, WHITE W, et al. Correlation study using scuffing damage to investigate improved simulation techniques for packaging vibration testing[J]. Packaging Technology and Science, 2013, 26(7): 373-383. [30] GE C F, PAN L. Vibration damage rate curves for quantifying abrasion of printed packaging in accelerated random vibration test[J]. Packaging Technology and Science, 2017, 32(2): 71-81. [31] KIPP W. Vibration testing equivalence - how many hours of testing equals how many miles of transport[C]// ISTA Conference 2000. Orlando: ISTA, 2008. [32] SHIRES D. On the time compression (test acceleration) of broadband random vibration tests[J]. Packaging Technology and Science, 2011, 24(2): 75-87. [33] NIESLONY A. Determination of fragments of multiaxial service loading strongly influencing the fatigue of machine components[J]. Mechanical Systems and Signal Processing, 2009, 23(8): 2712-2721.

PDF(1905 KB)

146

Accesses

0

Citation

Detail

段落导航
相关文章

/