特重冰区特高压直流孤立档导线脱冰动力响应参数预测模型

张立光1, 2, 滕宇3, 董松昭1, 2, 王炜1, 2, 李占岭1, 2, 高英博3, 严波3

振动与冲击 ›› 2024, Vol. 43 ›› Issue (12) : 221-231.

PDF(5762 KB)
PDF(5762 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (12) : 221-231.
论文

特重冰区特高压直流孤立档导线脱冰动力响应参数预测模型

  • 张立光1,2,滕宇3,董松昭1,2,王炜1,2,李占岭1,2,高英博3,严波3
作者信息 +

Dynamic response parameters prediction models of isolated-span conductor lines in ultra-heavy ice zones after ice-shedding

  • ZHANG Liguang1,2,TENG Yu3,DONG Songzhao1,2,WANG Wei1,2,LI Zhanling1,2,GAO Yingbo3,YAN Bo3
Author information +
文章历史 +

摘要

特重冰区特高压直流线路导线覆冰设计厚度达60 mm~80 mm,多采用孤立档。本文针对特重冰区特高压直流六分裂导线,建立有限元模型,模拟研究不同档距、高差比、覆冰厚度、脱冰率和风速条件下孤立档导线脱冰动力响应,并分析其响应特征。给出导线冰跳高度包络线、有风情况下导线脱冰后横向摆幅参数和纵向不平衡张力的定义。结合利用数值模拟结果建立的数据集和BP(back propagation)神经网络机器学习算法,建立以档距、高差比、覆冰厚度、脱冰率和风速为输入,导线冰跳高度包络线、最大横向摆幅、最小横向摆幅、脱冰前平衡位置、孤立档两端纵向不平衡张力为输出的预测模型,为特重冰区特高压直流线路塔头设计提供依据。

Abstract

The design ice thickness for the ultra-high voltage DC lines in ultra-heavy ice zones may arrives at 60 mm~80 mm, and isolated-span lines are usually employed. In this paper, the finite element models of the ultra-high voltage DC lines in ultra-heavy ice zones are set up, the dynamic responses of the lines with different span length, elevation difference ratio under different ice thickness, ice-shedding rate and wind speed are numerically simulated, and the dynamic response characteristics are analyzed. The conductor jump height envelop, transverse swing amplitude and axial unbalanced tension are defined. Combining the numerical simulations and the BP neural network algorithm, the prediction models for the dynamic response parameters with span length, elevation difference ratio, ice thickness, ice-shedding rate and wind speed as input are established. The prediction models provide instruction for the tower head design of the ultra-high voltage DC lines in ultra-heavy ice zones.

关键词

特重冰区 / 特高压直流线路 / 脱冰动力响应参数 / 机器学习 / 预测模型

Key words

Ultra-heavy ice zone / ultra-high voltage DC Line / ice-shedding dynamic response parameter / machine learning / prediction model.

引用本文

导出引用
张立光1, 2, 滕宇3, 董松昭1, 2, 王炜1, 2, 李占岭1, 2, 高英博3, 严波3. 特重冰区特高压直流孤立档导线脱冰动力响应参数预测模型[J]. 振动与冲击, 2024, 43(12): 221-231
ZHANG Liguang1, 2, TENG Yu3, DONG Songzhao1, 2, WANG Wei1, 2, LI Zhanling1, 2, GAO Yingbo3, YAN Bo3. Dynamic response parameters prediction models of isolated-span conductor lines in ultra-heavy ice zones after ice-shedding[J]. Journal of Vibration and Shock, 2024, 43(12): 221-231

参考文献

[1] Oertli H. Oscillations de cables electriques aeriens apres la chute de surcharges[J]. Bull Assoc Suisse Elect, 1950, 41: 501. [2] Lips K. Die Schnellhohe von freileitungsseilen nach abfallen von zusatzlastcn[J]. Bull Assoc Suisse Elect, 1952, 43: 62. [3] Morgan V. T., Swift D. A. Jump height of overhead-line conductors after the sudden release of ice loads[J]. Proceedings IEE, 1964, 111(10): 1736-1746. [4] Wu C, Yan B, Zhang L, et al. A method to calculate jump height of iced transmission lines after ice-shedding[J]. Cold Regions Science and Technology, 2016, 125: 40-47. [5] Jamaleddine A, Mcclure G, Rousselet J, et al. simulation of ice-shedding on electrical transmission lines using ADINA[J]. Computers & Structures, 1993, 47(4-5): 523-536. [6] Fekr M R, Mcclure G. Numerical modelling of the dynamic response of ice-shedding on electrical transmission lines[J]. Atmospheric Research, 1998, 46(1-2): 1-11. [7] Mcclure G, Lapointe M. Modeling the structural dynamic response of overhead transmission lines[J]. Computers & Structures, 2003, 81(8): 825-834. [8] 杨风利,杨靖波.重冰区覆冰导线脱冰跳跃荷载分析[J].振动与冲击,2013,32(5):10-15. Yang F L, Yang J B, Analysis on the loads from ice shedding conductors in heavy icing areas [J]. Journal of Vibration and Shock, 2013, 32(5): 10-15. [9] Yang F L, Yang J B, Zhang Z F. Unbalanced tension analysis for UHV transmission towers in heavy icing areas[J]. Cold Regions Science and Technology, 2012, 70: 132-140. [10] Kollar L E, Farzaneh M. Modeling sudden ice shedding from conductor bundles[J]. IEEE Transactions on Power Delivery, 2013, 28(2): 604-611. [11] Yan B, Chen K Q, Guo Y, et al. Numerical simulation study on jump height of iced transmission lines after ice shedding[J]. IEEE Transactions on Power Delivery, 2013, 28(1): 216-225. [12] 严波,陈科全,肖洪伟等.风荷载作用下覆冰导线脱冰后的最大横向摆幅[J].应用力学学报,2013,30(6):913-957. Yan B, Chen K Q, Xiao H W, et al. Horizontal amplitude of iced conductor after ice-shedding under wind load[J]. Chinese Journal of Applied Mechanics, 2013, 30(6): 913-957. [13] Gao S, Zeng C, Zhou L Q, et al. Numerical analysis of the dynamic effects of wine-cup shape power transmission tower-line system under ice-shedding[J]. Structures, 2020, 24, 1-12. [14] 郭裕钧,闫向龙,黄桂灶等.非均匀覆冰下输电导线的脱冰跳跃动力特性[J/OL].高电压技术:1-11[2023-10-12]. Guo Y J, Yan X L, Huang G Z, et al. Dynamic characteristics of transmission line conductors with non-uniform accreted ice after ice-shedding[J/OL]. High Voltage Engineering, 1-11 [2023-10-12]. [15] 张宇卓,江岳,李小亭等.架空输电导线不均匀脱冰跳跃高度计算[J].振动与冲击,2023,42(11):75-86. Zhang Y Z, Jiang Y, Li X T, et al. Calculation of jump height for uneven ice-shedding of overhead transmission lines[J]. Journal of Vibration and Shock, 2023, 42(11): 75-86. [16] 李哲,王建,梁允等.基于Adaboost算法的输电线路舞动预警方法[J].重庆大学学报,2016,39(1):32-38. Li Z, Wang J, Liang Y, et al. An early warning method of transmission line galloping based on Adaboost algorithm[J]. Journal of Chongqing University, 2016, 39(1): 32-38. [17] Wang J, Xiong X F, Zhou N, et al. Early warning method for transmission line galloping based on SVM and AdaBoost bi-level classifiers[J]. IET Generation, Transmission & Distribution, 2016, 10(14): 3499-3507. [18] 廖峥,熊小伏,李新等.基于BP神经网络的输电线路舞动预警方法[J].电力系统保护与控制,2017,45(19):154-161. Liao Z, Xiong X F, Li X, et al. An early warning method of transmission line galloping based on BP neural network[J]. Power System Protection and Control, 2017, 45(19): 154-161. [19] Mou Z Y, Yan B, Lin X, et al. Prediction method for galloping features of transmission lines based on FEM and machine learning[J]. Cold Regions Science and Technology, 2020, 173. [20] Wen N, Yan B, Mou Z Y, et al. Prediction models for dynamic response parameters after ice-shedding based on machine learning method[J]. Electric Power Systems Research, 2022, 202: 107580. [21] 眭嘉里,严波,林翔等.基于BP神经网络的悬垂绝缘子串风偏角预测模型[J].重庆大学学报,2021,44(08):114-124. Sui J L, Yan B, Lin X, et al. BP neural network model for dynamic swing angle of suspended insulator string[J]. Journal of Chongqing University, 2021, 44(08): 114-124. [22] DL/T 5551-2018,架空输电线路荷载规范[S].北京:中国计划出版社, 2019. DL/T 5551-2018, Load code for the design of overhead transmission line[S]. China Planning Press, 2019. [23] Barbieri N, Oswaldo Honorato de Souza Júnior, Barbieri R. Dynamical analysis of transmission line cables. Part 2—damping estimation[J]. Mechanical Systems and Signal Processing, 2004, 18(3): 671-681. [24] Lilien J. L., Van D. State of the art of conductor galloping[M]. Paris, France: CIGRE Publication: 2007. [25] 东北电力设计院.电力工程高压送电线路设计手册[M].北京:中国电力出版社,2003:116-176. Northeast Electric Power Design Institute. Power engineering high voltage transmission line design manual[M]. Beijing: China Electric Power Press, 2003:116-176.

PDF(5762 KB)

Accesses

Citation

Detail

段落导航
相关文章

/