结构动力问题的高阶精确时步群积分方法

李鸿晶, 杨寅

振动与冲击 ›› 2024, Vol. 43 ›› Issue (12) : 286-297.

PDF(2767 KB)
PDF(2767 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (12) : 286-297.
论文

结构动力问题的高阶精确时步群积分方法

  • 李鸿晶, 杨寅
作者信息 +

Time-step group-based higher-order accurate time integration algorithms for structural dynamics

  • LI Hongjing, YANG Yin
Author information +
文章历史 +

摘要

高阶精确时间积分方法可为与时间相关的高频复杂动力行为提供高精度的预测结果,但既有高阶精确时间积分方法普遍存在计算工作量偏大的问题,难以满足实际结构线性和非线性动力分析日益增长的计算需求。本文提出了一种基于时步群的高阶精确时间积分方法,将p (p≥2) 个相邻的未知时步组成待求解的时步群,以结构动力方程积分解为基础构建逐时步群求解结构动态响应的时间积分方案。在对每个时步群进行积分的过程中,无需联立求解方程,仅通过矩阵乘法运算即可一次性地计算得到时步群内全部p个时步的动态响应。数值特性分析以及线性与非线性算例试验均表明,本文算法精度高、稳定性好、数值耗散可控,在选择较大的时间步距情形下依然能够稳定地获得高精度的计算结果。相较传统二阶精度时间积分方法,本文算法的计算效率亦有较大幅度的提高。

Abstract

Higher-order accurate time integration methods can provide highly precise estimations for time-dependent problems, especially for complicated dynamic behavior involving abundantly high frequency contents. However, the existing higher-order accurate time integration methods generally have the drawback that they require large amount of computational efforts, which restrict their applications to linear and nonlinear dynamic response analysis of practical structures. In this article, a novel higher-order accurate and efficient time integration algorithm is proposed for structural dynamic problems. The theoretical solutions governing the state equations of the system are employed to construct the group-by-group procedure, in which a time-step group consisting of p time steps is regarded as the unknown time interval to be solved, and all p solutions within the time-step group are obtained simultaneously only by the matrix multiplications. Both numerical characteristics and test examples from linear and nonlinear dynamic problems show that, the proposed time-step group method is higher-order accurate and stable with controllable numerical dissipation, and highly accurate solutions of structural dynamic response can still be obtained stably even in the case of selecting larger time steps. Compared to traditional second-order accuracy time integration methods, the computational effort of the time-step group method has been decreased greatly.

关键词

结构动力分析 / 高阶精确时间积分 / 时步群 / 矩阵指数 / 微分求积

Key words

dynamic analysis of structures / higher-order accurate time integration / time-step group / matrix exponential / differential quadrature

引用本文

导出引用
李鸿晶, 杨寅. 结构动力问题的高阶精确时步群积分方法[J]. 振动与冲击, 2024, 43(12): 286-297
LI Hongjing, YANG Yin. Time-step group-based higher-order accurate time integration algorithms for structural dynamics[J]. Journal of Vibration and Shock, 2024, 43(12): 286-297

参考文献

[1] Newmark N M. A method of computation for structural dynamics [J]. Journal of the Engineering Mechanics Division, ASCE, 1959, 85: 67-94. [2] Bathe K J, Baig M M I. On a composite implicit time integration procedure for nonlinear dynamics [J]. Computers & Structures, 2005, 83: 2513-2524. [3] Wen W B, Wei K, Lei H S, et al. A novel sub-step composite implicit time integration scheme for structural dynamics [J]. Computers & Structures, 2017, 182: 176-186. [4] Kim W, Choi S Y. An improved implicit time integration algorithm: The generalized composite time integration algorithm [J]. Computers & Structures, 2018, 196: 341-354. [5] Zhang H M, Xing Y F. Optimization of a class of composite method for structural dynamics [J]. Computers & Structures, 2018, 202: 60-73. [6] Malakiyeh M M, Shojaee S, Bathe K J. The Bathe time integration method revisited for prescribing desired numerical dissipation [J]. Computers & Structures, 2019, 212: 289-298. [7] Noh G, Bathe K J. The Bathe integration method with controllable spectral radius: The ρ∞-Bathe method [J]. Computers & Structures, 2019, 212: 299-310. [8] Ji Y, Xing Y F. An optimized three-sub-step composite time integration method with controllable numerical dissipation. Computers & Structures, 2020, 231: 106210. [9] Kim S J, Cho J Y, Kim W D. From the trapezoidal rule to higher-order accurate and unconditionally stable time-integration method for structural dynamics [J]. Computer Methods in Applied Mechanics and Engineering, 1997, 149: 73-88. [10] Fung T C. Complex-time-step Newmark methods with controllable numerical dissipation. International Journal for Numerical Methods in Engineering, 1998, 41: 65-93. [11] Kujawski J, Gallagher R H. A generalized least-squares family of algorithms for transient dynamic analysis [J]. Earthquake Engineering & Structural Dynamics, 1989, 18: 539-550. [12] Golley B W. A time-stepping procedure for structural dynamics using Gauss point collocation [J]. International Journal for Numerical Methods in Engineering, 1996, 39: 3985-3998. [13] Fung T C. Unconditionally stable collocation algorithms for second order initial value problems [J]. Journal of Sound and Vibration, 2001, 247: 343-365. [14] Fung T C. Weighting parameters for unconditionally stable higher-order accurate time step integration algorithms –– Part 2: second-order equations [J]. International Journal for Numerical Methods in Engineering, 1999, 45: 971-1006. [15] Kim W, Reddy J N. Effective higher-order time integration algorithms for the analysis of linear structural dynamics [J]. ASME Journal of Applied Mechanics, 2017, 84: 071009. [16] Riff R, Baruch M. Time finite element discretization of Hamilton’s law of varying action [J]. AIAA Journal, 1984, 22(9): 1310-1318. [17] Fung T C. Unconditionally stable higher-order accurate Hermitian time finite elements [J]. International Journal for Numerical Methods in Engineering, 1996, 39: 3475-3495. [18] Bellman R, Casti J. Differential quadrature and long-term integration [J]. Journal of Mathematical Analysis and Applications, 1971, 34: 235-238. [19] Bellman R, Kashef B G, Casti J. Differential quadrature: a technique for the rapid solution of nonlinear partial differential equations [J]. Journal of Computational Physics, 1972, 10: 40-52. [20] Fung T C. Solving initial value problems by differential quadrature method——part 2: second- and higher-order equations [J]. International Journal for Numerical Methods in Engineering, 2001, 50: 1429-1454. [21] Liu J, Wang X. An assessment of the differential quadrature time integration scheme for nonlinear dynamic equations [J]. Journal of Sound and Vibration, 2008, 314: 246-253. [22] 李鸿晶, 王通. 结构地震反应分析的逐步微分积分方法[J]. 力学学报, 2011, 43(2): 430-435. LI Hong-jing, WANG Tong. A time-stepping method of seismic response analysis for structures using differential quadrature rule [J]. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(2): 430-435. [23] 梅雨辰, 李鸿晶, 孙广俊. 基于微分求积原理的地震反应谱计算方法[J]. 地震工程于工程振动, 2017, 37(5): 25-37. MEI Yu-chen, LI Hong-jing, SUN Guang-jun. A method of seismic response spectrum calculation by the differential quadrature rule [J]. Earthquake Engineering and Engineering Dynamics, 2017, 37(5): 25-37. [24] 梅雨辰, 李鸿晶, 孙广俊. 结构动力响应微分求积分析方法的基本特性[J]. 振动与冲击, 2020, 39(5): 214-221+243. MEI Yu-chen, LI Hong-jing, SUN Guang-jun. Basic characteristics of differential quadrature method for dynamic response of structures [J]. Journal of Vibration and Shock, 2020, 39(5): 214-221+243. [25] Tomasiello S. Stability and accuracy of DQ-based step-by-step integration methods for structural dynamics [J]. Applied Mathematical Modelling, 2013, 37: 3426-3435. [26] 钟万勰. 结构动力方程的精细时程积分法[J]. 大连理工大学学报, 1994, 34(2): 131-136. ZHONG Wan-xie. On precise time-integration method for structural dynamics [J]. Journal of Dalian University of Technology, 1994, 34(2): 131-136. [27] Zhong W X, Williams F W. A precise time step integration method [J]. Proceedings of the Institution of Mechanical Engineers Part C: Journal of Mechanical Engineering Science, 1994, 208: 427-430. [28] 高强, 谭述君, 钟万勰. 精细积分方法研究综述[J]. 中国科学: 技术科学, 2016, 46(12): 1207-1218. GAO Qiang, TAN Shu-jun, ZHONG Wan-xie. A survey of the precise integration method [J]. Scientia Sinica: Technologica, 2016, 46(12): 1207-1218. [29] Wang M, Au F T K. Assessment and improvement of precise time step integration method [J]. Computers & Structures, 2006, 84: 779-786. [30] Gu Y, Chen B, Zhang H, et al. Precise time-integration method with dimensional expanding for structural dynamic equations [J]. AIAA Journal, 2001, 39: 2394-2399. [31] 谭述君, 钟万勰. 非齐次动力方程Duhamel项的精细积分. 力学学报[J], 2007, 39(3): 374-381. TAN Shu-jun, ZHONG Wan-xie. Precise integration method for Duhamel terms arising from non-homogenous dynamic systems [J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 39(3): 374-381. [32] Zhong W X. On precise integration method [J]. Journal of Computational and Applied Mathematics, 2004, 163: 59-78. [33] Moler C, Van Loan C. Nineteen dubious ways to compute the exponential of a matrix [J]. SIAM Review, 1978, 20: 801-836. [34] Moler C, Van Loan C. Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later [J]. SIAM Review, 2003, 45: 3-49. [35] 李鸿晶, 梅雨辰, 任永亮. 一种结构动力时程分析的积分求微方法[J]. 力学学报, 2019, 51(5): 1507-1516. LI Hong-jing, MEI Yu-chen, REN Yong-liang. An integral differentiation procedure for dynamic time-history response analysis of structures [J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(5): 1507-1516. [36] 李鸿晶, 杨筱朋, 梅雨辰. 一种多自由度阻尼体系动力问题的高阶分析方法[J]. 工程力学, 2021, 38(1): 15-26. LI Hong-jing, YANG Xiao-peng, MEI Yu-chen. A high-order procedure for dynamics of multi-degree-of-freedom damping systems [J]. Engineering Mechanics, 2021, 38(1): 15-26. [37] Bathe K J, Wilson E L. Stability and accuracy analysis of direct integration methods [J]. Earthquake Engineering & Structural Dynamics, 1973, 1: 283-291. [38] Kim W, Reddy J N. Novel explicit time integration schemes for efficient transient analysis of structural problems [J]. International Journal of Mechanical Sciences, 2020, 172: 105429. [39] Chung J, Lee J M. A new family of explicit time integration methods for linear and non-linear structural dynamics [J]. International Journal for Numerical Methods in Engineering, 1994, 37: 3961-3976.

PDF(2767 KB)

286

Accesses

0

Citation

Detail

段落导航
相关文章

/