沉箱码头在空中和水下爆炸作用下的累积毁伤效应研究

刘靖晗1,2,唐廷1,韦灼彬1,李凌锋1,董琪3

振动与冲击 ›› 2024, Vol. 43 ›› Issue (12) : 298-306.

PDF(2256 KB)
PDF(2256 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (12) : 298-306.
论文

沉箱码头在空中和水下爆炸作用下的累积毁伤效应研究

  • 刘靖晗1,2,唐廷1,韦灼彬1,李凌锋1,董琪3
作者信息 +

Cumulative damage effect of the caisson wharf induced by air and underwater explosions

  • IU Jinghan1,2, TANG Ting1, WEI Zhuobin1, LI Lingfeng1, DONG Qi1
Author information +
文章历史 +

摘要

为了揭示沉箱码头在空中接触爆炸和水下近距离爆炸荷载作用下的累积毁伤效应,对沉箱码头模型开展多类型单次组合爆炸试验,并建立有限元模型对沉箱码头的毁伤过程进行数值模拟,分析了空中、水下单次组合爆炸作用下沉箱码头的毁伤发展和破坏机理。结果表明:空中爆炸和水下爆炸下,沉箱码头呈现出不同的破坏模式,空中接触爆炸下沉箱码头仅上部面板局部破坏,面板爆心位置形成局部破口,而水下近距离爆炸下沉箱和面板均发生明显破坏,沉箱迎爆面中下区域混凝土保护层破碎,面板与管沟连接处形成横向通长裂缝。在空中和水下单次组合爆炸荷载下,沉箱码头上部结构的破坏现象和毁伤程度存在叠加效应,码头面板的二次毁伤在已毁伤形态的基础上发展形成,二次毁伤现象与单次爆炸下的毁伤现象具有一定相似性和累积效应。空中和水下单次组合爆炸作用下,码头面板和管沟连接区域由于应力集中为码头的薄弱部位,沉箱封仓板由于上下填砂的缓冲作用毁伤效应较轻微。

Abstract

In order to study the cumulative damage effect of caisson wharf induced by air contact explosion and close proximity underwater explosion, the caisson wharf model tests and finite element models were established to analyze the damage process and mechanism of the caisson wharf subjected to combined air and underwater explosion. The results show that the caisson wharf has different failure modes subjected to air and underwater explosion. Under air contact explosion, only the upper structure of caisson wharf is seriously damaged, where a blast hole is observed locally on. Under close-in underwater explosion, both the caisson and the upper structure are obviously damaged. The concrete cover in blast side of caisson is broken. There are transverse cracks at the connection between panel and pipe trench. The damage phenomenon and damage degree of the wharf is disturbed by the superimposition of air and underwater explosions. The secondary damage of wharf forms on the first damage, and is similar with that under single blast. The connection of panel and is weak area due to stress concentration subjected to combined air and underwater explosion. The sealed plate slightly damages due to sand pack buffer mechanism.

关键词

水下爆炸 / 空中接触爆炸 / 单次组合爆炸 / 沉箱码头 / 累积毁伤效应 / 毁伤机理

Key words

underwater explosion / air contact explosion / combined explosion / caisson wharf / cumulative damage effect / damage mechanism.

引用本文

导出引用
刘靖晗1,2,唐廷1,韦灼彬1,李凌锋1,董琪3. 沉箱码头在空中和水下爆炸作用下的累积毁伤效应研究[J]. 振动与冲击, 2024, 43(12): 298-306
IU Jinghan1,2, TANG Ting1, WEI Zhuobin1, LI Lingfeng1, DONG Qi1. Cumulative damage effect of the caisson wharf induced by air and underwater explosions[J]. Journal of Vibration and Shock, 2024, 43(12): 298-306

参考文献

[1] 董琪, 韦灼彬, 唐廷, 等. 水下爆炸对沉箱重力式码头毁伤效应[J]. 爆炸与冲击, 2019, 39(6): 065101. DOI: 10.11883/bzycj-2018-0090. DONG Q, WEI Z B, TANG T, et al. Damage effects of caisson gravity wharf under underwater explosion[J]. Explosion and Shock Waves, 2019, 39(6): 065101. DOI: 10.11883/bzycj-2018-0090. [2] 李凌锋, 韦灼彬, 唐廷, 等. 爆炸荷载下沉箱重力式码头模型毁伤效应[J]. 爆炸与冲击, 2019, 39(1): 012202. DOI: 10.11883/bzycj-2017-0406. LI L F, WEI Z B, TANG T, et al. Damage effects of the caisson gravity wharf model subjected to explosion[J]. Explosion and Shock Waves, 2019, 39(1): 012202. DOI: 10.11883/bzycj-2017-0406. [3] 韩华烨, 王高辉, 卢文波,等. 水下多弹爆炸打击下混凝土重力坝的累积毁伤效应研究[J]. 振动与冲击, 2022, 41(13): 172-179. DOI: 10.13465/j. cnki. jvs.2022.13.022. HAN H Y, WANG G H, LU W B, et al. Cumulative damage effect of concrete gravity dam under underwater multi-bomb explosion[J]. Journal of Vibration and Shock, 2022, 41(13): 172-179. DOI: 10.13465/j. cnki. jvs.2022.13.022 [4] 张社荣, 孔源, 王高辉. 水下和空中爆炸冲击波传播特性对比分析[J]. 振动与冲击, 2014, 33(13):148-153. DOI: 10.13465/j.cnki.jvs.2014.13.026. ZHANG S R, KONG Y, WANG G H. A comparative analysis on shock wave propagation characteristics of underwater and air explosions[J]. Journal of Vibration and Shock, 2014, 33(13):148-153. DOI: 10.13465/j.cnki.jvs.2014.13.026. [5] Rajendran R , Lee J M. Blast loaded plates[J]. Marine Structures, 2009, 22(2):99-127. DOI: 10.1016/j.marstruc.2008.04.001. [6] 张社荣, 王高辉. 混凝土重力坝抗爆性能及抗爆措施研究[J]. 水利学报, 2012, 43(010): 1202-1213. DOI: CNKI:SUN:SLXB.0.2012-10-012. ZHANG S R, WANG G H. Study on the antiknock performance and measures of concrete gravity dam[J]. Journal of Hydraulic Engineering, 2012, 43(010) : 1202-1213. DOI: CNKI:SUN:SLXB.0.2012-10-012. [7] 张社荣, 王高辉. 水下爆炸冲击荷载下混凝土重力坝的抗爆性能[J]. 爆炸与冲击, 2013(03):723-731. DOI: 10.3969/j.issn.1001-1455.2013.03.006. ZHANG S R, WANG G H. Antiknock performance of concrete gravity dam subjected to underwater explosion[J]. Explosion and Shock Waves, 2013, 33(3): 255-263. DOI: 10.3969/j.issn.1001-1455.2013.03.006. [8] 韦灼彬. 钢筋混凝土桩基梁板码头爆炸毁伤及抢修技术研究[D]. 天津:天津大学, 2005:8-68. DOI: 10.7666/d.y850662. [9] 费鸿禄, 张国辉. 多次爆破荷载作用下大荒沟小净距隧道围岩岩体位移响应[J]. 爆炸与冲击, 2013, 33(1): 91-97. DOI: 10.11883/1001-1455(2013)01-0091-07. FEI H L, ZHANG G H. Displacement responses of Dahuanggou surrounding rock with small clearance under blast loads[J]. Explosion and Shock Waves, 2013, 33(1): 91-97. DOI: 10.11883/1001-1455(2013)01-0091-07. [10] 李旭东, 尹建平, 杜志鹏,等. 多次水下爆炸钢制圆板应变与挠度增长规律分析[J]. 振动与冲击, 2020, 39(5):131-136. DOI: 10.13465/j.cnki.jvs.2020.05.017. LI X D, YIN J P, DU Z P, et al. Growth law analysis for strain and deflection of steel circular plates subjected to multiple underwater explosions[J]. Journal of Vibration and Shock, 2020, 39(5): 131-136. DOI: 10.13465/j.cnki.jvs.2020.05.017. [11] 张斐, 张春辉, 张磊,等. 多次水下爆炸作用下钢板与焊接钢板冲击损伤特性[J]. 振动与冲击, 2020, 39(7):196-201. DOI:10.13465/j.cnki.jvs.2020.07.027. ZHANG F, ZHANG C H, ZHANG L,et al. Impact damage of steel plate and welding steel plate under multiple Underwater Explosions[J]. Journal of Vibration and Shock, 2020, 39(7): 196-201. DOI:10.13465/j.cnki.jvs.2020.07.027. [12] 周游, 纪冲, 王雷元,等. 重复爆炸载荷作用下薄壁方管动力响应研究[J]. 兵工学报, 2019, 40(9): 1871-1880. DOI: 10.3969/j.issn.1000-1093.2019.09.012. ZHOU Y, JI C, WANG L Y, et al. Research on the Dynamic Response of Thin-walled Square Tube under Repeated Blast Loads[J]. ACTA Armamentarii, 2019, 40(9): 1871-1880. DOI: 10.3969/j.issn.1000-1093.2019.09.012. [13] Cole R H, Weller R. Underwater explosions[J]. Princeton University Press, 1948. [14] 李海涛,朱石坚,刁爱民,等. 水下爆炸作用下对称结构船体梁整体损伤特性研究[J]. 船舶力学, 2017, (08): 983-992. DOI: 10.3969/j.issn.1007-7294.2017.08.007. LI H T, ZHU S J, DIAO A M, et al. experimental investigation on the damage modes of axisymmetrical ship-like beam subjected to underwater explosions in near-field[J]. Journal of ship mechanics, 2017, (08): 983-992. DOI: 10.3969/j.issn.1007-7294.2017.08.007. [15] 刘靖晗, 唐廷, 韦灼彬, 等. 水下爆炸作用下高桩码头毁伤效应的数值研究[J]. 高压物理学报, 2020, 34(4): 045101. DOI: 10.11858/gywlxb.20190850. LIU J H, TANG T, WEI Z B, et al. Numerical study of damage effect for high-piled wharf subjected to underwater explosion[J]. Chinese Journal of High Pressure Physics, 2020, 34(4): 045101. DOI: 10.11858/gywlxb.20190850. [16] Tu Z , Lu Y . Evaluation of typical concrete material models used in hydrocodes for high dynamic response simulations[J]. International Journal of Impact Engineering, 2009, 36(1):132-146. DOI: 10.1016/j.ijimpeng.2007.12.010. [17] Malvar LJ, Ross CA. 1998. Review of strain rate effects for concrete in tension[J]. ACI Materials Journal 95(6): 735-739. DOI: 0.14359/418. [18] Bischoff P H , Perry S H . Compressive behaviour of concrete at high strain rates[J]. Materials and Structures, 1991, 24(6):425-450. DOI: 10.1007/BF02472016. [19] 董琪, 韦灼彬, 唐廷, 等. 爆炸深度对浅水爆炸气泡脉动的影响 [J]. 高压物理学报, 2018, 32(2): 024102. DOI: 10.11858/gywlxb.20170580. DONG Q, WEI Z B, TANG T, et al. Influence of explosion depth on bubble pulsation in shallow water explosion [J]. Chinese Journal of High Pressure Physics, 2018, 32(2): 024102. DOI: 10.11858/gywlxb.20170580.

PDF(2256 KB)

Accesses

Citation

Detail

段落导航
相关文章

/