航空发动机叶片冲击耗散能对机匣包容能力的影响研究

曹铁男1, 杨治中1, 王靖元1, 燕吉强2, 张代军2

振动与冲击 ›› 2024, Vol. 43 ›› Issue (12) : 322-330.

PDF(2007 KB)
PDF(2007 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (12) : 322-330.
航空航天

航空发动机叶片冲击耗散能对机匣包容能力的影响研究

  • 曹铁男1,杨治中1,王靖元1,燕吉强2,张代军2
作者信息 +

Effects of impact dissipated energy of aero-engine blades on casing containment capacity

  • CAO Tienan1, YANG Zhizhong1, WANG Jingyuan1, YAN Jiqiang2, ZHANG Daijun2
Author information +
文章历史 +

摘要

面向航空发动机机匣包容精细设计需求,研究飞失过程中叶片耗散能对机匣包容性的影响规律。结合打靶试验及有限元数值仿真,对以TC4靶板为对象的机匣包容原理模拟件进行研究,揭示了机匣包容能力对叶片冲击耗散能的敏感性,验证了数值分析方法的准确性和合理性。基于建立的简化风扇模型,明确了机匣包容不同阶段中叶片—机匣能量转化机制,分析了叶片与机匣碰撞过程中机匣包容能力对叶片材料主要参数的敏感性。结果表明:叶片在冲击、碰撞过程产生的耗散能对机匣包容能力有着明显的影响,在工程设计中可考虑通过改善叶片材料延伸率和硬化系数以及降低弹性模量等途径提升机匣的包容能力。

Abstract

For the requirements of fine design of aero-engine casing, the influence of blade dissipated energy on casing containment in the process of blade loss was studied. Combined with ballistic impact test and finite element numerical simulation, the TC4 target plate, regarded as principle simulated component of casing containment, was researched. The sensitivity of casing containment capacity to blade impact dissipated energy was revealed, and the accuracy and rationality of the numerical analysis method were verified. Based on the established simplified fan model, the energy conversion mechanism of blade-casing in different stages of casing containment was clarified, and the sensitivity of casing containment capacity to the major parameters of blade material during the collision between blades and casing was analyzed. The results show that the blade dissipated energy during impact and collision has a significant effect on the containment capacity of the casing, and it can be considered to improve the containment capacity of casing by enhancing the elongation, improving the hardening coefficient, and reducing the elastic modulus of blade material in engineering design.

关键词

机匣包容 / 叶片耗散能 / 损伤模式 / 本构参数

Key words

casing containment / blade dissipated energy / mode of damage / constitutive parameter

引用本文

导出引用
曹铁男1, 杨治中1, 王靖元1, 燕吉强2, 张代军2. 航空发动机叶片冲击耗散能对机匣包容能力的影响研究[J]. 振动与冲击, 2024, 43(12): 322-330
CAO Tienan1, YANG Zhizhong1, WANG Jingyuan1, YAN Jiqiang2, ZHANG Daijun2. Effects of impact dissipated energy of aero-engine blades on casing containment capacity[J]. Journal of Vibration and Shock, 2024, 43(12): 322-330

参考文献

[1] 陈光. 航空发动机结构设计分析[M]. 北京:北京航空航天大学出版社,2006. Chen Guang. Analysis of aero engine structure design[M]. Beijing: Beijing University of Aeronautics and Astronautics Press, 2006. [2] 宣海军,陆晓,洪伟荣,等. 航空发动机机匣包容性研究综述[J]. 航空动力学报,2010,25(8):1860-1870. Xuan Haijun, Lu Xiao, Hong Weirong, et al. Review of aero-engine case containment research[J]. Journal of Aerospace Power, 2010, 25(8): 1860-1870. [3] 中国航空工业总公司. GJB 3366-98 航空涡轮发动机包容性要求[S]. 北京:总装备部军标出版发行部,1998. Aviation Industry Corporation of China. GJB 3366-98 The requirements of aircraft turbine engine containment[S]. Beijing: The Chinese People's Liberation Army General Armaments Department Military Standard Publication Distribution Department, 1998. [4] 中国人民解放军空军. GJB 241A-2010航空涡轮喷气和涡轮风扇发动机通用规范[S]. 北京:总装备部军标出版发行部,2010. The Chinese People's Liberation Army General Arma-ments Department. Engine, aircraft, turbojet and turbofan, general specification for. Beijing: The Chinese People's Liberation Army General Armaments Department Military Standard Publication Distribution Department, 2010. [5] United States Air Force. MIL-STD-1783B Engine structural integrity program[S]. United States: Department of Defense, 2002. [6] J. Michael, Bradley A, Lerch. Effects of heat treatment on the ballistic impact properties of Inconel 718 for jet engine fan containment applications. International Journal of Impact Engineering,2001, 25(8): 715-733. [7] Lee W S, Lin C F. High-temperature deformation behavior of Ti6Al4V alloy evaluated by high strain rate compression tests[J]. Journal of Materials Processing Technology, 1998, 75(1-3): 127-136. [8] Lee W S, Lin C F. Plastic deformation and fracture behavior of Ti6Al4V alloy loaded with high strain rate under various temperatures[J]. Materials Science and Engineering A: 1998, 24 (1-2): 48-59. [9] Meyer JR H W, Kleponis D. Modeling the high strain rate behavior of titanium undergoing ballistic impact and penetration[J]. International Journal of Impact Engineering: 2001, 26(1-10): 509-521. [10] Chen G, Ren C Z, Yang X Y, et al. Finite element simulation of high speed machining of titanium alloy (Ti-6Al-4V) based on ductile failure model[J]. The International Journal of Advanced Manufacturing Technology, 2011, 56(9-12): 1027-1038. [11] Li L, He N. A FEA study on mechanisms of saw-tooth chip deformation in high speed cutting LI of Ti-6Al-4V alloy[C]: Fifth international conference on high speed machining (HSM). Meta, France, 2006:14-16. [12] Leisure D. Experimental investigation of material models for Ti-6Al-4V and 2024-T3: DOT/FAA/AR-00/25[R]. Livermore: Lawrence Livermore National Laboratory, 1999. [13] 邓云飞,张永,安静丹等. TC4钛合金力学性能测试及其本构关系研究[J]. 振动与冲击,2020,39(18):70-77. Deng Yunfei, Zhang Yong, An Jingdan, et al. Mechanical properties and constitutive relationship of TC4 titanium alloy[J]. Journal of Vibration and Shock, 2020, 39(18): 70-77. [14] 惠旭龙,牟让科,白春玉等. TC4钛合金动态力学性能及本构模型研究[J]. 振动与冲击,2016,35(22):162-168. Hui Xulong, Mu Rangke, Bai Chunyu et al. Dynamic mechanical property and constitutive model for TC4 titanium alloy[J]. Journal of Vibration and Shock, 2016, 35(22): 162-168. [15] Naik N K, Shrirao P. Composite structure under ballistic impact[J]. Composite Structures, 2004, 66(1-4): 579-590. [16] Xia Y M, Wang X. Constitutive equation forunidirectional composites under tensile impact[J]. Composites Science and Technology, 1996, 56(2): 155-160. [17] D. Naik, S.D. Rajan et al. Development of reliable modeling methodologies for fan blade out containment analysis Part I: Experimental studies[J], International Journal of Impact Engineering, 2009, 36(1): 1-11. [18] Z. Stahlecker, S.D. Rajan et al. Development of reliable modeling methodologies for fan blade out containment analysis Part II: Finite element analysis[J], International Journal of Impact Engineering, 2009, 36(3): 447-459. [19] 何庆. 航空发动机机匣包容性机理及数值仿真方法研究[D]:浙江大学,2012. He Qing. Research on the mechanism and simulation methodology development for aero-engine casing/blade containment[D]: Zhejiang University, 2012. [20] Gunderson C O. Study to improve airframe turbine engine rotor blade containment[R]. DOT/ FAA/ RD- 77/ 44, 1997. [21] 张帆,曹振忠,苗艳,等. 航空发动机双层结构金属机匣的弹道试验[J]. 航空动力学报,2022,37(6):1248-1259. Zhang Fan, Cao Zhengzhong, Miao Yan et al. Ballistic test of double⁃layer metal casing of aero⁃engines[J]. Journal of Aerospace Power, 2022, 37(6): 1248-1259. [22] Beckman M E, Goldsmith W. The mechanics of penetration of projectile into targets[J]. International Journal of Impact Engineering, 1978,16(1): 1-99. [23] Corbett, Reid S R. Johnson W. Impact loading of plates and shells by free flying projectile: a review[J], International Journal of Impact Engineering, 1996, 18(2): 171-230. [24] Goldsmith W. Non-ideal projectile impact on targets[J]. International Journal of Impact Engineering, 1999, 22(2-3): 95-395. [25] He Qing, Xuan Haijun. Perforation of aero-engine fan casing by a single rotating blade[J]. Aerospace Science and Technology, 2013, 25(1): 234-241. [26] 何庆,宣海军,刘璐璐. 某型发动机一级风扇机厘包容性数值仿真[J]. 航空动力学,2012,27(2):295-300. He Qing, Xuan Haijun, Liu LuLu. Numerical analysis of real aero-engine first-stage fan blade containment[J]. Journal of Aerospace Power, 2012, 27(2): 295-300. [27] K.S. Carney, J.M. Pereira. Jet engine fan blade containment using an alternate geometry[J]. International Journal of Impact Engineering, 2009, 36(1): 720-728. [28] 刘璐璐,宣海军,张娜. 航空发动机复合材料机匣叶片包容性研究[J]. 工程力学,2013,30(S1):314-319. Liu Lulu, Xua Haijun, Zhang Na. Investigation on blade containment of aero-engine composite case[J], Engineering Mechanics, 2013, 30(S1): 314-319. [29] Johnson G R, Cook W H. A constitutive model and data for metals subjected to large strains, high strain sates and high temperatures[C]: Proceedings of the Seventh International Symposium on Ballistics. Hague, Netherlands, 1983:541-547. [30] 何庆,宣海军,廖连芳. 薄靶板受叶片形弹体撞击的数值仿真研究[J]. 工程力学,2010,27(4):234-239. He Qing, Xuan Haijun, Liao Lianfang. Numerical simulation of a thin plate impacted by blade projectile[J], Engineering Mechanics, 2010, 27(4):234-239. [31] 中国航空材料手册编辑委员会. 中国航空材料手册:第1卷,结构钢、不锈钢[M]. 北京:中国标准出版社,2001. Editorial Board of China Aeronautical Materials Handbook. China aeronautical materials handbook: volume 1, structural steel, stainless steel[M]. Beijing: Standards Press of China, 2001. [32] 中国航空材料手册编辑委员会. 中国航空材料手册:第4卷,钛合金、铜合金[M]. 北京:中国标准出版社,2001. Editorial Board of China Aeronautical Materials Handbook. China aeronautical materials handbook: Volume 4, Titanium alloy, copper alloy[M]. Beijing: Standards Press of China, 2001. [33] 中国兵器工业集团第五三研究所等. GA950-2011防弹材料及产品V50试验方法[S]. 北京:中华人民共和国公安部出版发行,2011. China North Industries Group Corporation Institute 53, et al. V50 test method for ballistic materials and products[S]. Beijing: The Ministry of Public Security of People’s Republic of China, 2011. [34] Ahmad A S, Wu Y, Gong H. Coupled finite and discrete element shot peening simulation based on Johnson–Cook material model[J]. Proceedings of the Institution of Mechanical Engineers Part L Journal of Materials Design and Applications, 2020, 234(5): 1-14.

PDF(2007 KB)

Accesses

Citation

Detail

段落导航
相关文章

/