时域动载荷作用下多微结构多尺度并行动力学拓扑优化

江旭东1, 吴昊1, 滕晓艳2, 熊冶平3

振动与冲击 ›› 2024, Vol. 43 ›› Issue (12) : 53-64.

PDF(2583 KB)
PDF(2583 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (12) : 53-64.
论文

时域动载荷作用下多微结构多尺度并行动力学拓扑优化

  • 江旭东1,吴昊1,滕晓艳2,熊冶平3
作者信息 +

Multiscale concurrent topology optimization for cellular structures with multiple microstructures subjected to dynamic load

  • JIANG Xudong1,WU Hao1,TENG Xiaoyan2,XIONG Yeping3
Author information +
文章历史 +

摘要

采用拓扑优化方法对含多种多孔材料的结构进行结构与材料微结构构型一体化设计,可以获得具有优良力学性能的结构设计。本文面向多晶胞双尺度结构的时域动刚度最优设计问题,考虑不同晶胞间的可连接性,并行设计微结构的构型及其宏观布局。首先,引入双Helmholtz平滑-分块投影方案,识别不同多孔材料的宏观结构域。其次,通过均匀化方法计算多孔材料的宏观等效力学性能,利用有序SIMP方法优化不同微观结构的宏观布局。同时,为了保证不同晶胞间的可连接性,在不同多孔材料微结构的边界区域设置为相同拓扑描述的可设计连接域。然后,基于先离散-后微分的伴随敏度分析方法,实现了时空离散动力系统的一致性敏度计算。最后,以双尺度结构动柔度最小化为目标,以材料用量为约束条件,提出了时域动载荷作用下多微结构多尺度并行动力学拓扑优化方法。数值算例结果表明,提出的优化方法能够实现多晶胞结构的构型与宏观布局设计,充分提高了多孔结构的承载性能,同时保证不同晶胞之间的几何连续性,研究结果可为高承载多孔材料结构设计提供理论参考。

Abstract

Topology optimization is an effective tool to perform the structure-material integrated design of a lattice structure with multiple microstructures for improving its mechanical performances. This paper aims to propose the concurrent design method for the lattice structure at both macro- and micro-scales considering the connectivity between neighboring microstructures for the dynamic stiffness maximization problem. Firstly, the double Helmholtz smoothing and piecewise projection scheme is introduced to identify the spatial distribution of multiple microstructure blocks at macroscale. Then, we optimize the spatial distribution of various microstructures by ordered SIMP method following the effective mechanical properties obtained by homogenization method. Meanwhile, the different microstructural unit cells share the same topology description within their boundary regions to ensure the connectivity. Subsequently, we implement the sensitivity analysis by adjoint variable method based on the “discretize-then-differentiate” approach, such that the consistent sensitivities are obtained on the space-time discretized system. Finally, we formulate the dynamic compliance minimization problem under the constraint of material volume fractions, and present the multiscale concurrent topology optimization method for structures periodically filled with multiple microstructures. Numerical examples demonstrate that this approach has the potential to perform the concurrent microscopic design of multiple unit-cells and their macroscopic layout for improving the load-carrying capacity and ensuring the geometrical connectivity between neighboring unit-cells. This method offers a theoretical reference for design of highly loading porous structures.

关键词

多尺度并行拓扑优化 / 多晶胞结构 / 瞬态动力学 / 微结构连接性 / 数值均匀化

Key words

multi-scale concurrent topology optimization / multiple cellular structure / transient dynamics / connectable microstructures / numerical homogenization

引用本文

导出引用
江旭东1, 吴昊1, 滕晓艳2, 熊冶平3. 时域动载荷作用下多微结构多尺度并行动力学拓扑优化[J]. 振动与冲击, 2024, 43(12): 53-64
JIANG Xudong1, WU Hao1, TENG Xiaoyan2, XIONG Yeping3. Multiscale concurrent topology optimization for cellular structures with multiple microstructures subjected to dynamic load[J]. Journal of Vibration and Shock, 2024, 43(12): 53-64

参考文献

[1] 张卫红, 周涵, 李韶英等. 航天高性能薄壁构件的材料-结构一体化设计[J]. 航空学报, 2023, 44 (9): 30-46. ZHANG Weihong, ZHOU Han, LI Shaoying, et al. Material-structure integrated design for high-performance aerospace thin-walled component [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44 (9): 30-46. [2] 廉艳平, 王潘丁, 高杰, 等. 金属增材制造若干关键力学问题研究进展[J]. 力学进展, 2021, 51: 1-54. LIAN Yanping, WANG Panding, GAO Jie, et al. Fundamental mechanics problems in metal additive manufacturing: A state-of-art review [J]. Advances in Mechanics, 2021, 51: 1-54. [3] SATTAR Mohammadi Esfarjani, ALI Dadashi, MOHAMMAD Azadi. Topology optimization of additive-manufactured metamaterial structures: A review focused on multi-material types [J]. Forces in Mechanics, 2022, 7: 100100. [4] MONTEMURRO Marco, ROINE Thibaut, PAILHES Jérôme. Multi-scale design of multi-material lattice structures through a CAD-compatible topology optimisation algorithm [J]. Engineering Structures, 2022, 273. [5] 倪维宇, 张横, 姚胜卫. 考虑阻尼性能的复合结构多尺度拓扑优化设计 [J]. 航空学报, 2021, 42(3): 338-348. NI Weiyu, ZHANG Heng, YAO Shengwei. Concurrent topology optimization of composite structures for considering structural damping [J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(3): 338-348. [6] OLIVER Giraldo-Londoño, GLAUCIO H. Paulino. Fractional topology optimization of periodic multi-material viscoelastic microstructures with tailored energy dissipation [J]. Computer methods in applied mechanics and engineering, 2020, 372: 113307. [7] NGUYEN Minh-Ngoc, HOANG Van-Nam, LEE Dongkyu. Multiscale topology optimization with stress, buckling and dynamic constraints using adaptive geometric components [J]. Thin-Walled Structures, 2023, 183. [8] ZHANG Huikai, WU Wenjun, KANG Zhan, et al. Topology optimization method for the design of bioinspired self-similar hierarchical microstructures [J]. Computer Methods in Applied Mechanics and Engineering, 2020, 37, 113399. [9] LI Yang, GAO Tong, ZHOU Qianying, et al. Layout design of thin-walled structures with lattices and stiffeners using multi-material topology optimization [J]. Chinese Journal of Aeronautics, 2023. [10] YAN Xiaolei, XU Qiwang, HU Haiyan, et al. Concurrent optimization of macrostructures and material microstructures and orientations for maximizing natural frequency [J]. Engineering Structures, 2020, 209: 109997. [11] ZHANG Chenghu, WU Tao, XU Shuzhi, et al. Multiscale topology optimization for solid-lattice-void hybrid structures through an ordered multi-phase interpolation [J]. Computer-Aided Design, 2023, 154. [12] ALI Musaddiq Al, SHIMODA Masatoshi. Toward multiphysics multiscale concurrent topology optimization for lightweight structures with high heat conductivity and high stiffness using MATLAB [J]. Structural and Multidisciplinary Optimization, 2022, 65: 207. [13] DU Z, ZHOU X, PICELLI R, et al. Connecting microstructures for multiscale topology optimization with connectivity index constraints [J]. Journal of Mechanical Design, 2018, 140: 111417. [14] GARNER E, KOLKEN H M, WANG C, et al. Compatibility in microstructural optimization for additive manufacturing [J]. Additive Manufacturing, 2019, 26: 65-75. [15] GAO Jie, LUO Zhen, LI Hao, et al. Dynamic multiscale topology optimization for multi-regional micro-structured cellular composites [J]. Composite Structures, 2019, 211: 401-407. [16] LIU Pai, KANG Zhan, LUO Yangjun. Two-scale concurrent topology optimization of lattice structures with connectable microstructures [J]. Additive Manufacturing, 2020, 36: 101427. [17] QIU Zheng, LI Quhao, LIU Shutian, et al. Clustering-based concurrent topology optimization with macrostructure, components, and materials [J]. Structural and Multidisciplinary Optimization, 2021, 63: 1243-1263. [18] GU Xuechen, HE Shaoming, DONG Yihao, SONG Tao. An improved ordered SIMP approach for multiscale concurrent topology optimization with multiple microstructures [J]. Composite Structures, 2022, 287: 115363. [19] GROEN J P, WU J, SIGMUND O. Homogenization-based stiffness optimization and projection of 2D coated structures with orthotropic infill [J]. Computer Methods in Applied Mechanics and Engineering, 2019, 349: 722-42. [20] ZHANG Yan, LIANG Gao, MI Xiao. Maximizing natural frequencies of inhomogeneous cellular structures by Kriging-assisted multiscale topology optimization [J]. Computers and Structures, 2020, 230: 106197. [21] ZHANG Yan, XIAO Mi, GAO Liang, et al. Multiscale topology optimization for minimizing frequency responses of cellular composites with connectable graded microstructures [J]. Mechanical Systems and Signal Processing, 2020, 135: 106369. [22] 黄垲轩,丁喆, 张严, 等. 高承载梯度分层点阵结构的拓扑优化设计方法[J]. 力学学报, 2023, 55(2): 433-444. HUANG Kaixuan, DING Zhe, ZHANG Yan, et al. Topological optimization design method of layer-wise graded lattice structures with high load-bearing [J]. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(2): 433-444. [23] SU Xiaonan, CHEN Wenjiong, LIU Shutian. Multi-scale topology optimization for minimizing structural compliance of cellular composites with connectable graded microstructures [J]. Structural and Multidisciplinary Optimization, 2021. [24] HU Tiannan, WANG Yaguang, ZHANG Heng, et al. Topology optimization of coated structures with layer-wise graded lattice infill for maximizing the fundamental eigenfrequency [J]. Computers and Structures, 2022, 271: 106861. [25] JAKOB S. JENSEN, PRAVEEN B. NAKSHATRALA, DANIEL A Tortorelli. On the consistency of adjoint sensitivity analysis for structural optimization of linear dynamic problems [J]. Structural and Multidisciplinary Optimization, 2014, 49: 831-837. [26] 张磊, 张严, 丁喆. 黏性阻尼系统时域响应灵敏度及其一致性研究[J]. 力学学报, 2022, 54(4): 1113-1124. ZHANG Lei, ZHANG Yan, DING Zhe. Adjoint sensitivity methods for transient responses of viscously damped systems and their consistency issues [J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(4): 1113-1124. [27] ZHAO Junpeng, YOON Heonjun, YOUN Byeng D. Concurrent topology optimization with uniform microstructure for minimizing dynamic response in the time domain [J]. Computers and Structures, 2019, 222: 98-117. [28] OLIVER Giraldo-Londono, GLAUCIO H. Paulino. PolyDyna: a Matlab implementation for topology optimization of structures subjected to dynamic loads [J]. Structural and Multidisciplinary Optimization, 2021, 1-34. [29] OGAWA S, YAMADA T. Topology optimization for transient thermomechanical coupling problems [J]. Applied Mathematical Modelling, 2022, 109: 536-554. [30] YUN Kyeong-Soo, YOUN Sung-Kie. Microstructural topology optimization of viscoelastic materials of damped structures subjected to dynamic loads [J]. International Journal of Solids and Structures, 2018, 147: 67-69. [31] WANG F, LAZAROV BS, SIGMUND O. On projection methods, convergence and robust formulations in topology optimization [J]. Structural and Multidisciplinary Optimization, 2011, 43(6):767-84. [32] LAZAROV B S, SIGMUND O. Filters in topology optimization based on Helmholtz-type differential equations [J]. International Journal for Numerical Methods in Engineering, 2011, 86: 765-781. [33] XIA Liang, BREITKOPF Piotr. Design of materials using topology optimization and energy-based homogenization approach in Matlab [J]. Structural and Multidisciplinary Optimization, 2015, 52: 1229-1241. [34] ZUO W, SAITOU K. Multi-material topology optimization using ordered SIMP interpolation [J]. Structural and Multidisciplinary Optimization. 2017, 55(2): 477-91. [35] BASEM S Attili. The Hilber–Hughes–Taylor-α (HHT-α) method compared with an implicit Runge–Kutta for second-order systems [J]. International Journal of Computer Mathematics, 2010, 87(8): 1755-1767.

PDF(2583 KB)

253

Accesses

0

Citation

Detail

段落导航
相关文章

/