柔性声学超材料及其低频消声特性

陈桂涛1,李营2,陈创1,张晏晴1,吕海峰1

振动与冲击 ›› 2024, Vol. 43 ›› Issue (12) : 65-71.

PDF(1810 KB)
PDF(1810 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (12) : 65-71.
论文

柔性声学超材料及其低频消声特性

  • 陈桂涛1,李营2,陈创1,张晏晴1,吕海峰1
作者信息 +

Muffling characteristics of flexible acoustic metamaterial to low-frequency noise

  • CHEN Guitao1,LI Ying2,CHEN Chuang1,ZHANG Yanqing1,L Haifeng1
Author information +
文章历史 +

摘要

为实现高速飞车舱内低频噪声控制,提出了一种基于Helmholtz共振效应的柔性声学超材料。通过理论分析Helmholtz腔的消声机理,利用COMSOL软件对比分析腔体单元、阵列结构的消声特性;通过声固耦合模块模拟柔性超材料的消声性能。参数化的研究了柔性声学超材料共振频率的变化规律,并分析了柔性超材料在不同变形程度下的消声特性。提出分部拔模的浇注工艺制备了柔性声学超材料样件,利用四传感器的测试原理测量样件的传递损失。研究结果表明,柔性声学超材料的测试、仿真结果均在300Hz处存在一个传递损失峰,表现出了低于理论模型的Helmholtz共振频率及良好的低频噪声控制效果,同时柔性材料可避免因惯性对安装环境造成冲击,适用于曲面环境,在工程领域具有较好的应用前景。

Abstract

In order to control the low-frequency noise in the cabin of high-speed flying train, a flexible acoustic metamaterial based on Helmholtz resonance effect is proposed. Theoretical analysis was conducted on the noise reduction mechanism of the Helmholtz cavity, and the noise reduction characteristics of the unit cavity structure and array cavity structure were compared and analyzed using COMSOL software. The acoustic performance of flexible metamaterial was analyzed through the acoustic structure coupling module. The variation of the resonant frequency of the flexible acoustic metamaterial is studied parametrically, and analyzed the noise reduction characteristics of flexible acoustic metamaterials under different degrees of deformation. The casting process of divided draft was proposed to prepare flexible acoustic metamaterial samples, and the transfer loss of samples was measured using the four sensor testing principle. The research results show that there is a transmission loss peak at 300Hz in the test and simulation results of flexible acoustic Metamaterial, which shows the Helmholtz resonance frequency lower than the theoretical model and good low-frequency noise control effect. At the same time, flexible materials can avoid the impact of inertia on the installation environment, which is suitable for curved surface environment, and has good application prospects in the engineering field.

关键词

低频噪声 / 柔性超材料 / Helmholtz效应 / 有限元分析 / 传递损失

Key words

low-frequency noise / flexible metamaterial / Helmholtz effect / finite element analysis / transmission loss

引用本文

导出引用
陈桂涛1,李营2,陈创1,张晏晴1,吕海峰1. 柔性声学超材料及其低频消声特性[J]. 振动与冲击, 2024, 43(12): 65-71
CHEN Guitao1,LI Ying2,CHEN Chuang1,ZHANG Yanqing1,L Haifeng1. Muffling characteristics of flexible acoustic metamaterial to low-frequency noise[J]. Journal of Vibration and Shock, 2024, 43(12): 65-71

参考文献

[1] 韩柏涛,刘留,裘陈成,等. 真空管道高速飞行列车综合承载业务需求分析[J]. 铁道学报,2019, 41(07): 66-76. HAN Botao, LIU Liu, QIU Chencheng, et al. Demand analysis of integrated service of vacuum tube high-speed flight train[J]. Journal of the China Railway Society, 2019, 41(07): 66-76. [2] 陆志猛,李从云,瞿金平,等. 薄膜型声学超材料对低频振动的隔声特性分析[J]. 应用声学,2022, 41(04): 667-673. LU Zhimeng, LI Congyun, QU Jinping, et al. Analysis of sound insulation characteristics of membrane-type acoustic metamaterials in low frequency vibration[J]. Journal of Applied Acoustics, 2022, 41(04): 667-673. [3] 杜功焕,朱哲民,龚秀芬. 声学基础[M]. 南京:南京大学出版社,2012. [4] 丁昌林,董仪宝,赵晓鹏. 声学超材料与超表面研究进展[J]. 物理学报,2018, 67(19): 10-23. DING Changlin, DONG Yibao, ZHAO Xiaopeng. Research advances in acoustic metamaterials and metasurface[J]. Acta Physica Sinica, 2018, 67(19): 10-23. [5] CUMMER S A, CHRISTENSEN J, ALU A. Controlling sound with acoustic metamaterials[J]. Nature Reviews Materials, 2016, 1(3): 16001. [6] 高南沙,侯宏. 新型斜截面形状嵌套谐振器的吸声特性研究[J]. 振动与冲击,2018, 37(21): 190-194. GAO Nansha, HOU Hong. Sound absorption characteristics of a new type oblique-section nested resonator[J]. Journal of Vibration and Shock, 2018, 37(21): 190-194. [7] LU M H, FENG L, CHEN Y F. Phononic crystals and acoustic metamaterials[J]. Materials Today, 2009, 12(12): 34-42. [8] MA G C, SHENG P. Acoustic metamaterials: From local resonances to broad horizons[J]. Science Advances, 2016, 2(2): e1501595. [9] 孟德世,李丽君,李敏. 声学超材料的结构设计概述[J]. 功能材料与器件学报,2021, 27(02): 67-76. MENG Deshi, LI Lijun, LI Min. Structural design of acoustic metamaterials[J]. Journal of Functional Materials and Devices, 2021, 27(02): 67-76. [10] 吴九汇,马富银,张思文,等. 声学超材料在低频减振降噪中的应用评述[J]. 机械工程学报,2016, 52(13): 68-78. WU Jiuhui, MA Fuyin, ZHANG Siwen, et al. Application of Acoustic Metamaterials in Low-frequency Vibration and Noise Reduction[J]. Journal of Mechanical Engineering, 2016, 52(13): 68-78. [11] LIU Z Y, ZHANG X X, MAO Y W, et al. Locally resonant sonic materials[J]. Science, 2000, 289(5485): 1734-1736. [12] FANG N, XI D, XÜ J, et al. Ultrasonic metamaterials with negative modulus[J]. Nature materials, 2006, 5(6): 452-456. [13] KELA L. Resonant frequency of an adjustable Helmholtz resonator in a hydraulic system[J]. Archive of Applied Mechanics, 2009, 79(12): 1115-1125. [14] DING C L, ZHAO X P. Multi-band and broadband acoustic metamaterial with resonant structures[J]. Journal of Physics D: Applied Physics, 2011, 44(21): 215402. [15] BRUNER T, MERLIN A, MASCARO B, et al. Soft 3D acoustic metamaterial with negative index[J]. Nature materials, 2015, 14(4): 384-388. [16] 周国建,田秀杰,黄威,等. 柔性声学超材料的低频隔声特性应用研究[C]// 全国声学设计与噪声振动控制工程学术会议组委会. 2017年全国声学设计与噪声振动控制工程学术会议论文集. 北京:《工业建筑》杂志社,2017:116-120. [17] 唐瀚川. 柔性声学超构材料的功能基元与序构设计研究[D]. 湖北:华中科技大学, 2021. TANG Hanchuan. Studies on the dseign of functional elements and ordering modes for soft acoustic meta- materials[D]. Hubei: Huazhong University of Science and Technology, 2021. [18] BEDOUT J M D , FRANCHEK M A , BERNHARD R J, et al.Adaptive-passive nosie control with self-tuning Helm- holtz resonators[J].Journal of Sound and Vibration, 1997, 202(1):109-123. [19] 吕海峰,王普浩,叶俊杰,等. 局域共振型声学超材料及其噪声控制[J]. 航空动力学报,2020, 35(7): 1369- 1375. LÜ Haifeng, WANG Puhao, YE Junjie, et al. Noise control of a local-resonant acoustic metamaterials[J]. Journal of Aerospace Power, 2020, 35(7): 1369-1375. [20] 魏逸飞. Helmholtz共振腔型声学超材料正向设计[D]. 山东:山东理工大学, 2021. WEI Yifei. Forward design of the Helmholtz resonator type acousti metamaterials[D].Shandong: Shandong University of Technology, 2021. [21] 贺子厚,赵静波,姚宏,等.薄膜底面Helmholtz腔声学超材料的隔声性能[J]. 物理学报,2019, 68(21): 148-159. HE Zihou, ZHAO Jingbo, YAO Qiong, et al. Sound insulation performance of Helmholtz cavity with thin film bottom[J]. Acta Physica Sinica, 2019, 68(21): 148-159. [22] 姬艳露. 薄膜型声学超材料设计及其隔声性能研究[D].太原:中北大学, 2019. JI Yanlu. Design of membrane-type acoustic metamaterial and study onacoustic insulation performance[D]. Taiyuan: North University of China, 2019. [23] 胡召平. 盘绕型Helmholtz腔声学超材料低频吸声特性研究[D]. 大连:大连理工大学, 2022. HU Zhaoping. Research of low frequency sound absorption characteristics of coiled Helmholtz cavity acoustic meta- materials[D]. Dalian: Dalian University of Technology, 2022. [24] Gao N. A new radial flexible acoustic metamaterial plate[J]. Journal of the Acoustical Society of America, 2016, 140(4): 3103-3103. [25] Mo Z, Song G, Hou K, et al. An iterative transfer matrix approach for estimating the sound speed and attenuation constant of air in a standing wave tube[J]. The Journal of the Acoustical Society of America, 2022, 151(6): 4016. [26] 褚志刚,徐少华,卢喜,等. 基于传递函数的消声器传声损失测量技术研究[J]. 振动与冲击, 2009, 28(07): 203-207 +223. CHU Zhigang, XU Shaohua, LU Xi, et al. Measurement of transmission loss of a muffler based on transfer function[J]. Journal of Vibration and Shock, 2009, 28(07): 203-207 +223. [27] 丁北,王炜.宽频带薄膜型声学超材料附加质量分布规律分析[J]. 振动与冲击,2023, 42(15): 225-231+284. DING Bei, WANG Yi. Additional mass distribution law of broadband memberane-type acoustic metamateria[J]. Jou- rnal of Vibration and Shock, 2023, 42(15): 225-231 +284

PDF(1810 KB)

Accesses

Citation

Detail

段落导航
相关文章

/