一种非对称特性约束的碰撞振动系统的动力学分析

张柏林1,李险峰1,张惠2,马国峰2

振动与冲击 ›› 2024, Vol. 43 ›› Issue (12) : 72-79.

PDF(1976 KB)
PDF(1976 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (12) : 72-79.
论文

一种非对称特性约束的碰撞振动系统的动力学分析

  • 张柏林1,李险峰1,张惠2,马国峰2
作者信息 +

The dynamics of a vibro-impact system with asymmetric characteristic constraints

  • ZHANG Bailin1,LI Xianfeng1,ZHANG Hui2,MA Guofeng2
Author information +
文章历史 +

摘要

本文研究了一种具有非对称约束的单自由度非对称碰撞振动系统。在对系统进行无量纲化建模处理后分析了系统的n-1-1周期运动的存在条件。在此基础之上推导了系统在n-1-1周期运动的情况下的Jacobi矩阵,利用参数状态空间联合仿真的方法分析了系统在参数平面(ω,δ)下系统的转迁规律以及变化参数ω时的动力学行为。提出了一种参数空间变化下探索吸引子共存现象的新方法,并分析了系统在状态空间下吸引子的演化趋势。

Abstract

This paper investigates a non-symmetric collision vibration system with asymmetric constraints. The conditions for n-1-1 periodic motion are given and the Jacobi matrix is derived from the non-dimensional modeling. In utilizing with a combined parametric-state simulation method, the transition sets are presented on the (ω,δ) plane, and the dynamical behavior against ω are also examined. A new method is proposed to explore coexisting attractors. Whereby the variations of attractors are depicted in parameter space.

关键词

非光滑 / 非对称 / 参数分岔 / 吸引域 / 胞映射 / 参数-状态空间联合仿真

Key words

non-smooth / non-symmetric / bifurcation / attractors domain / cell-to-cell mapping / parametric-state-space simulation

引用本文

导出引用
张柏林1,李险峰1,张惠2,马国峰2. 一种非对称特性约束的碰撞振动系统的动力学分析[J]. 振动与冲击, 2024, 43(12): 72-79
ZHANG Bailin1,LI Xianfeng1,ZHANG Hui2,MA Guofeng2. The dynamics of a vibro-impact system with asymmetric characteristic constraints[J]. Journal of Vibration and Shock, 2024, 43(12): 72-79

参考文献

[1] Nusse H E, Yorke J A. Border-collision bifurcations for piecewise smooth one-dimensional maps [J]. International Journal of Bifurcation and Chaos,1995,05(01):189-207. [2] Nusse H E, Ott E, Yorke J A. Border-collision bifurcations: An explanation for observed bifurcation phenomena [J]. Physical Review E, 1994, 49(2):1073-1076. [3] Nordmark A B. Non-periodic motion caused by grazing incidence in an impact oscillator [J]. Journal of Sound and Vibration,145(2):279-297. [4] Bernardo M di, Budd C J, Champneys A R. Normal form maps for grazing bifurcations in n-dimensional piecewise-smooth dynamical systems [J]. Physica D: Nonlinear Phenomena, 2001,160(3-4): 222-254. [5] Bernardo M di Budd C J, Champneys A R. Grazing and Border-Collision in Piecewise-Smooth Systems: A Unified Analytical Framework [J]. Physical Review Letter, 2001, 86(12):2553-2556. [6] Ma Yue, Ing J, Soumitro B,et al. The nature of the normal form map for soft impacting systems [J]. International Journal of Non-Linear Mechanics, 2008,43(6): 504-513. [7] 田海勇,刘卫华,赵日旭.随机干扰下碰撞振动系统的动力学分析 [J].振动与冲击,2009,28(09):163-167+221. TIAN Haiyong, LIU Weihua, ZHAO Rixu. Dynamic analysis of a vibro-impact system with random disturbance [J]. Journal of Vibration and Shock, 2009,28(09):163-167+221. [8] 张 惠. 碰撞振动系统参数-状态空间全局动力学研究 [D]. 兰州:兰州交通大学,2021. ZHANG Hui. Parameter-State Space Global Dynamical Studies of Collision Vibration System [D]. Lanzhou Jiaotong University,2021. [9] Ramos J.I. Parker T S, Chua L O. Practical numerical algorithms for chaotic systems [J]. Applied Mathematical Modelling, 1991, 15(11-12): 663-664. [10] 李银山. 振动力学—线性振动 [M]. 北京:人民交通出版社,2022 Li Y S. Zhendong Lixue-Xianxing Zhendong [M]. Beijing: China Communications Press,2022 [11]文成秀 姚玉玺 闻邦椿. 动力系统的点映射—胞映射综合法 [J]. 振动工程学报, 1997, 10(4):413-419. WEN Chengxiu, YAO yuxi, WEN bangchun. Point Mapping—Cell Mapping Synthesis Method for Dynamic System [J]. Journal of Vibration Engineering, 1997, 10(4):413-419. [12] Hsu C S. A Theory of Cell-to-Cell Mapping Dynam ical Systems [J].Journal of Applied Mechanics, 1980, 47(4): 931-939. [13] Hsu C S. A Generalized Theory of Cell-to-Cell Mapping for Nonlinear Dynamical Systems [J]. Journal of Applied Mechanics, 1981, 48(3): 634-642. [14] Hsu C S. Cell-to-Cell Mapping: A Method of Global Analysis for Nonlinear Systems [M]. Berlin, German: Springer,1987. [15] Hsu C S. Global Analysis of Dynamical Systems Using Posets and Digraphs [J]. International Journal of Bifurcation and Chaos.1995,05(04):1085-1118. [16] Spek J A W, Hoon C A L, Kraker A,et al. Application of Cell Mapping methods to a discontinuous dynamic system [J]. Nonlinear Dynamics, 1994, 6(1) :87-99. [17] Virgin L N, Begley C J Grazing bifurcations and basins of attraction in an impact-friction oscillator [J].Physica D: Nonlinear Phenomena,1999, 130(1–2): 43-57. [18] Levitas J, Weller T, Singer J. Poincaré-like Simple Cell Mapping For Non-linear Dynamical Systems [J]. Journal of Sound and Vibration, 1994, 176(5): 641-662. [19] 刘 恒, 虞 烈, 谢友柏,等. Poincare型胞映射分析方法及其应用 [J]. 力学学报, 1999, 31(1):91-99. LIU Heng, YÜ Lie, XIE Youbai. Poincare-Like Cell Mapping Method and Its Application [J]. Chinese Journal of Theoretical and Applied Mechanics,1999,31(01):91-99. [20] 李得洋,丁旺才,丁杰,等.单自由度含对称约束碰振系统周期运动的转迁规律分析 [J].振动与冲击,2019,38(22):52-59. LI Deyang, DING Wangcai, DING Jie, et al. Transition of periodic motions of a 1DOF vibro - impact system with symmetrical constraints [J]. Journal of Vibration and Shock, 2019,38(22):52-59. [21] 张 惠, 丁旺才, 李险峰.分段光滑碰撞振动系统吸引域结构变化机理研究 [J].振动与冲击,2019,38(18):141-147. ZHANG Hui, DING Wangcai, LI Xianfeng. Structure change mechanism of the attractor basin in a piecewise-smooth vibro-impact system [J]. Journal of Vibration and Shock,2019,38(18):141-147. [22] ZHANG Hui, LI Xianfeng, Leung A Y T. A Calculation Method on Bifurcation and State Parameter Sensitivity Analysis of Piece-Wise Mechanical Systems [J]. International Journal of Bifurcation and Chaos, 2020,30(11). [23] Z Li,J Kang,J Jiang,L Hong Parallel Subdomain Synthesis of Cell Mapping for Capturing Global Invariant Sets in Higher-Dimensional Dynamical Systems [J]. International Journal of Bifurcation and Chaos. 2022, 32(15): 1-13 [24] 吴 鑫, 李高磊, 乐 源.单自由度碰撞振动系统的奇异非混沌动力学和多稳态共存[J].振动与冲击,2022,41(02):45-52+86. WU Xin,LI Gaolei, Yue Yuan, Strange nonchaotic dynamics and multistable coexistence phenomena of a single-degree-of-freedom vibro-impact system [J]. Journal of Vibration and Shock, 2022,41(02):45-52+86.

PDF(1976 KB)

Accesses

Citation

Detail

段落导航
相关文章

/