基于MRD优化布置的水轮发电机组碰摩系统振动抑制

张雷克1,聂梁1,张金剑2,3,王雪妮1,4,马震岳2

振动与冲击 ›› 2024, Vol. 43 ›› Issue (13) : 1-11.

PDF(5155 KB)
PDF(5155 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (13) : 1-11.
论文

基于MRD优化布置的水轮发电机组碰摩系统振动抑制

  • 张雷克1,聂梁1,张金剑2,3,王雪妮1,4,马震岳2
作者信息 +

Vibration suppression of rubbing system in water turbine generator set based on MRD optimization arrangement

  • ZHANG Leike1, NIE Liang1, ZHANG Jinjian2,3, WANG Xueni1,4, MA Zhenyue2
Author information +
文章历史 +

摘要

针对水轮发电机组转子-转轮系统碰摩故障问题,采用磁流变液阻尼器( Magneto-Rheological Fluid Damper, MRD )对轴系振动进行抑制,旨在探究MRD对机组轴系振动的影响规律及其对系统碰摩故障的抑制效果。首先,将机组轴向位置函数引入MRD非线性动力学模型,推导了碰摩故障下含轴向分布参数的MRD-转子-转轮系统动力学方程。其次,基于数值模拟方法,以机组转速为控制参数对比分析了是否考虑MRD的转子-转轮系统非线性动力学行为。最后,研究了不同MRD轴向布置参数对碰摩转子-转轮系统动力学行为的影响。研究结果表明:MRD的加入对转子、转轮非稳态运动具有良好约束作用,能够显著减小转子、转轮振动幅值,有效避免了机组轴系碰摩故障的发生;当阻尼器位置参数s1与s2分别取0.25与0.95时,MRD对系统的减振效果最佳。通过在机组轴系合理布置MRD,可有效改善系统振动情况,从而为水轮发电机组振动控制提供有益指导。

Abstract

Aiming at the rotor-runner system with rubbing problem of hydro-generator set, the Magneto-Rheological Fluid Damper ( MRD ) is adopted to control the shaft vibration, in order to investigate the influence of MRD on vibration pattern of unit shaft system and corresponding effect on suppression of system rubbing faults. Firstly, the unit axial position function is introduced into MRD nonlinear dynamics model, and the dynamic model of MRD-rotor-runner system with axial distribution parameter under rubbing fault is established. Secondly, based on numerical simulation method, the nonlinear dynamic behavior of rotor-runner system with or without considering MRD is comparatively analyzed using unit speed as control parameter. Finally, the effects of different MRD axial arrangement parameters on the dynamic behavior of rubbing rotor-runner system are investigated. The results show that the addition of MRD has a good restraining effect on unsteady motion of rotor and runner, which can significantly reduce vibration amplitude of rotor and runner, and effectively avoid the occurrence of rubbing faults in unit shaft system. The vibration dampening effect of MRD on the system is the best when damping parameters s1 and s2 are taken to be 0.25 and 0.95, respectively. By reasonably arranging MRD in unit shaft system, the system vibration can be effectively improved, thus providing useful guidance for vibration control of hydro-generator set.

关键词

水轮发电机组 / 转子-转轮系统 / 碰摩 / 磁流变液阻尼器 / 振动优化控制

Key words

hydrogenerator set / rotor-runner system / rub-impact / magneto-rheological fluid damper / optimized vibration control

引用本文

导出引用
张雷克1,聂梁1,张金剑2,3,王雪妮1,4,马震岳2. 基于MRD优化布置的水轮发电机组碰摩系统振动抑制[J]. 振动与冲击, 2024, 43(13): 1-11
ZHANG Leike1, NIE Liang1, ZHANG Jinjian2,3, WANG Xueni1,4, MA Zhenyue2. Vibration suppression of rubbing system in water turbine generator set based on MRD optimization arrangement[J]. Journal of Vibration and Shock, 2024, 43(13): 1-11

参考文献

[1] CHENG J T, WANG L, XIONG Y. Cuckoo search algorithm with memory and the vibrant fault diagnosis for hydroelectric generating unit [J]. Engineering with Computers, 2019, 35(2): 687-702. [2] FU X Q, JIA W T, XU H, et al. Imbalance misalignment rubbing coupling faults in hydraulic turbine vibration [J]. Optik, 2016, 127(8): 3708-3712. [3] 黄志伟, 周建中, 张勇传. 水轮发电机组转子不对中-碰摩耦合故障动力学分析[J]. 中国电机工程学报, 2010, 30(8): 88-93. HUANG Zhiwei, ZHOU Jianzhong, ZHANG Yongchuan. Dynamic analysis on hydraulic generator rotors with coupling faults of misalignment and rub-impact [J]. Proceedings of the CSEE, 2010, 30(8): 88-93. (in Chinese) [4] 黄志伟, 周建中, 张孝远, 等. 水轮发电机组轴系松动-碰摩耦合故障的动态响应[J]. 西南交通大学学报, 2011, 46(1): 121-126. HUANG Zhiwei, ZHOU Jianzhong, ZHANG Xiaoyuan, et al. Dynamic responses of shaft systam of hydraulic generator set with coupling faults of bearing looseness and rotor rub-impact [J]. Journal of Southwest Jiaotong University, 2011, 46(1): 121-126. (in Chinese) [5] 张雷克, 马震岳. 不平衡磁拉力作用下水轮发电机组转子系统碰摩动力学分析[J]. 振动与冲击, 2013, 32(8): 48-54. ZHANG Leike, MA Zhenyue. Dynamic analysis for rotor system with rub-impact of hydraulic generating set under unbalanced magnetic pull [J]. Journal of Vibration and Shock, 2013, 32(8): 48-54. (in Chinese) [6] ZHANG L K, MA Z Y, WU Q Q, et al. Vibration analysis of coupled bending-torsional rotor-bearing system for hydraulic generating set with rub-impact under electromagnetic excitation [J]. Archive of Applied Mechanics, 2016, 86(9): 1665-1679. [7] ZHANG J J, ZHANG L K, MA Z Y, et al. Coupled bending-torsional vibration analysis for rotor-bearing system with rub-impact of hydraulic generating set under both dynamic and static eccentric electromagnetic excitation [J]. Chaos Solitons and Fractals, 2021, 147: 110960. [8] THIERY F, AIDANPÄÄ J O. Nonlinear vibrations of a misaligned bladed jeffcott rotor [J]. Nonlinear Dynamics, 2016, 86(3): 1807-1821. [9] THIERY F, GUSTAVSSON R, AIDANPÄÄ J O. Dynamics of a misaligned kaplan turbine with blade-to-stator contacts [J]. International Journal of Mechanical Sciences, 2015, 99: 251-261. [10] AN X L, ZHOU J Z, XIANG X Q, et al. Dynamic response of a rub-impact rotor system under axial thrust [J]. Archive of Applied Mechanics, 2009, 79(11): 1009-1018. [11] GUO W C, WU F L. Hydraulic-mechanical coupling vibration performance of pumped storage power station with two turbine units sharing one tunnel [J]. Journal of Energy Storage, 2022, 53: 105082. [12] XU B B, LUO X Q, EGUSQUIZA MÒNICA, et al. Nonlinear modal interaction analysis and vibration characteristics of a francis hydro-turbine generator unit [J]. Renewable Energy, 2021, 168: 854-864. [13] MOHANTA RATI KANTA, CHELLIAH THANGA RAJ, ALLAMSETTY SRIKANTH, et al. Sources of vibration and their treatment in hydro power stations-A review [J]. Engineering Science and Technology an International Journal, 2017, 20(2): 637-648. [14] GUO W C, YANGH J D, CHEN J P, et al. Time response of the frequency of hydroelectric generator unit with surge tank under isolated operation based on turbine regulating modes [J]. Electric Power Components and Systems, 2015, 43(20): 2341-2355. [15] YAN D L, ZHENG Y, LIU W Y, et al. Interval uncertainty analysis of vibration response of hydroelectric generating unit based on chebyshev polynomial [J]. Chaos Solitons and Fractals, 2022, 155: 111712. [16] DOLLON Q, TAHAN A, ANTON J, et al. Toward a better understanding of synchronous vibrations in hydroelectric turbines [J]. Journal of Sound and Vibration, 2023, 544: 117372. [17] 孙洪鑫, 王修勇, 陈政清, 等. 磁流变式调谐液柱阻尼器对桥梁风致扭转振动的控制效果[J]. 中国公路学报, 2010, 23(1): 58-65. SUN Hongxin, WANG Xiuyong, CHEN Zhengqing, et al. Wind-induced torsional vibration control effect of bridge with magnetorheological tuned liquid column damper [J]. China Journal of Highway and Transport, 2010, 23(1): 58-65. (in Chinese) [18] 张文静, 牛江川, 申永军, 等. 基于分数阶磁流变液阻尼器模型的车辆悬架组合控制[J]. 力学学报, 2021, 53(7): 2037-2046. ZHANG Wenjing, NIU Jiangchuan, SHEN Yongjun, et al. Combined control of vehicle suspension with fractional-order magnetorheologocal fluid damper model [J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(7): 2037-2046. (in Chinese) [19] 解世君, 易卫东, 杨墨欣, 等. 一种用于可穿戴康复训练系统的微型磁流变液阻尼器的仿真与优化设计研究[J]. 生物医学工程学杂志, 2022, 39(6): 1133-1139. XIE Shijun, YI Weidong, YANG Moxin, et al. Research on simulation and optimal design of a miniature magnetorheological fluiddamper used in wearable rehabilitation training system [J]. Journal of Biomedical Engineering, 2022, 39(6): 1133-1139. (in Chinese) [20] ASHRAF WAQAR MUHAMMAD, RAFIQUE YASIR, UDDIN GHULAM MOEEN, et al. Artificial intelligence based operational strategy development and implementation for vibration reduction of a supercritical steam turbine shaft bearing [J]. Alexandria Engineering Journal, 2022, 61(3): 1864-1880. [21] YANG G, SPENCER B F, CARLSON J D, et al. Large-scale MR fluid dampers: modeling and dynamic performance considerations [J]. Engineering Structures, 2002, 24(3): 309-323. [22] 邓志党, 高峰, 刘献栋, 等. 磁流变阻尼器力学模型的研究现状[J]. 振动与冲击, 2006, 25(3): 121-126. DENG Zhidang, GAO Feng, LIU Xiandong, et al. State-of-artresearch on dynamical models of magnetorheological damper [J]. Journal of Vibration and Shock, 2006, 25(3): 121-126. (in Chinese) [23] WANG J, MENG G. Experimental study on stability of an MR fluid damper-rotor-journal bearing system [J]. Journal of Sound and Vibration, 2003, 262(4): 999-1007. [24] WANG J, MA L, ZHANG J H, et al. Mitigation of nonlinear rub-impact of a rotor system with magnetorheological damper [J]. Journal of Intelligent Material Systems and Structures, 2020, 31(3): 321-338. [25] 孙万泉, 张宁. 基于MRD的水轮发电机组轴系非线性振动控制[J]. 振动与冲击, 2020, 39(1): 79-84. SUN Wanquan, ZHANG Ning. Nonlinear vibration control for hydro-generator unit's shafting based on MRD [J]. Journal of Vibration and Shock, 2020, 39(1): 79-84. (in Chinese) [26] 张宁. 水轮发电机组轴系统的MRD振动控制研究[D]. 北京: 华北电力大学, 2020. ZHANG Ning. Research on MRD Vibration Control of Hydrogenerator Shaft System [D]. Beijing: School of Renewable Energy, 2020. (in Chinese) [27] 张雷克, 唐华林, 王雪妮, 等. 磁流变液阻尼器控制下贯流式机组轴系碰摩振动特性分析[J]. 中国电机工程学报, 2022, 42(2): 693-701. ZHANG Leike, TANG Hualin, WANG Xueni, et al. Analysis of rub-impact vibration characteristics of tubular hydro-generator set shaft system controlled by magneto-rheological fluid damper [J]. Proceedings of the CSEE, 2022, 42(2): 693-701. (in Chinese) [28] ZENG Y, ZHANG L X, GUO Y K, et al. The generalized hamiltonian model for the shafting transient analysis of the hydro turbine generating sets [J]. Nonlinear Dynamics, 2014, 76(4): 1921-1933. [29] SAKAI C, OHMORI H, SANO A. Modeling of MR damper with hysteresis for adaptive vibration control [C]. International Conference on Decision and Control, 2003, 42(2): 3840-3845.

PDF(5155 KB)

486

Accesses

0

Citation

Detail

段落导航
相关文章

/