基于任意拉格朗日欧拉方法的射流破土仿真分析

吴尚华,鲁滢,武硕,尹原超,张陶,岳前进

振动与冲击 ›› 2024, Vol. 43 ›› Issue (13) : 162-171.

PDF(3657 KB)
PDF(3657 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (13) : 162-171.
论文

基于任意拉格朗日欧拉方法的射流破土仿真分析

  • 吴尚华,鲁滢,武硕,尹原超,张陶,岳前进
作者信息 +

Simulation analysis of jet soil-breaking based on arbitrary Lagrange-Euler method

  • WU Shanghua, LU Ying, WU Shuo, YIN Yuanchao, ZHANG Tao, YUE Qianjin
Author information +
文章历史 +

摘要

本文基于任意拉格朗日-欧拉(ALE)方法对射流破土过程进行仿真分析。以琼州海峡粘土质砂为研究对象,选用MAT-FHWA-SOIL模型建立土体材料本构。运用LS_DYNA软件建立包括射流源、喷嘴、水域及土体的仿真模型,探究射流破土机理。并讨论射流关键参数对破土效果的影响,对射流压力、喷嘴直径、射流靶距进行单因素研究。研究发现在其他射流参数不变的情况下,射流压力增大1倍,最大冲坑深度也增大1倍;土体的冲蚀体积会随着射流压力的增大而增加,与射流时间近似成线性关系;喷嘴直径从5cm增大到9cm时,最大冲坑深度增幅为43%。在20~60cm之间的射流靶距对清理效果的影响较小。本文研究可为海底电缆抢修的射流破土作业过程提供依据。

Abstract

Based on the arbitrary Lagrangian-Eulerian (ALE) method, the process of water jet soil-breaking was simulated and analyzed. Taking the clayey sand in Qiongzhou Strait as the research object, the MAT-FHWA-SOIL model was selected to establish the constitutive model of soil material. Using LS_ DYNA software established simulation models including jet source, nozzle, water area, and soil to explore the mechanism of water jet soil-breaking.The impact of key jet parameters on the soil breaking effect was discussed. A single factor study on jet pressure, nozzle diameter, and jet target distance was conducted. The results find that when other jet parameters remain unchanged, the jet pressure increases by one time and the maximum depth of the flushing pit also increases by one time; The erosion volume of soil increases with the increase of jet pressure, which is approximately linearly related to jet time; When the nozzle diameter increases from 5cm to 9cm, the maximum depth of the flushing pit increases by 43%. The jet target distance between 20 and 60cm has a small impact on the cleaning effect. This study could provide a basis for the water jet soil-breaking operation process of submarine cable emergency repair.

关键词

射流破土 / 任意拉格朗日-欧拉法 / 冲坑深度 / 过程仿真

Key words

water jet soil-breaking / arbitrary Lagrange-Euler method / depth of erosion / process simulation

引用本文

导出引用
吴尚华,鲁滢,武硕,尹原超,张陶,岳前进. 基于任意拉格朗日欧拉方法的射流破土仿真分析[J]. 振动与冲击, 2024, 43(13): 162-171
WU Shanghua, LU Ying, WU Shuo, YIN Yuanchao, ZHANG Tao, YUE Qianjin. Simulation analysis of jet soil-breaking based on arbitrary Lagrange-Euler method[J]. Journal of Vibration and Shock, 2024, 43(13): 162-171

参考文献

[1] 林志立,卢钱杰,易新华等.高压水射流技术的发展与应用[J].中国科技产业,2021,No.383(05):46-47. LIN Zhili,LU Qianjie,YI Xinhua,et al. Development and application of high-pressure water jet technolog-y[J].China Science and Technology Industry,2021,No.383(05):46-47. [2] 沈忠厚,李根生,王瑞和.水射流技术在石油工程中的应用及前景展望[J].中国工程科学,2002(12):60-65. SHEN Zhonghou,LI Gensheng,WANG Ruihe.Applica-tion and prospect of water jet technology in petrol-eum engineering[J].Engineering Science,2002(12):60-65. [3] Hogg A J, Huppert H E, Dade W B. Erosion by planar turbulent wall jets [J]. J Fluid Mech, 1997, 338: 317-340. [4] 张浩, 倪福生, 顾磊, 等. ALE方法及SPH方法模拟高速射流破土过程的对比[J]. 水电能源科学, 2015, 33: 75-78. ZHANG Hao, NI Fusheng, GU Lei, et al. Comparison of ALE method and SPH method to simulate high-speed jet groundbreaking process[J]. Water Resources and Power, 2015, 33: 75-78. [5] Mazurek K A, Rajaratnam N, Sego D C. Scour of cohesive soil by submerged circular turbulent impinging jets [J]. J Hydraul Eng-ASCE, 2001, 127(7): 598-606. [6] Perng A. Trenching of underwater sand beds by steadily moving jets [D]. Taibei; PhD thesis, Graduate Institute of Civil Engineering, National Taiwan University, 2006. [7] Clark L A, Wynn T M. Methods for determining streambank critical shear stress and soil erodibility: Implications for erosion rate predictions [J]. Trans ASABE, 2007, 50(1): 95-106. [8] Gu L, Ni F, Xu L, et al. Determining the Threshold Pressure of Clay-Cutting by a Mobile Jet for Coastal Construction [J]. Journal of Coastal Research, 2018, 34(5): 1209-1215. [9] 张树森. 海底冲射式开沟机喷冲系统研究与应用[D]. 上海; 上海交通大学, 2015. ZHANG Shusen. Research and application of jet flushing system of submarine thrust trencher[D]. Shanghai; Shanghai Jiao Tong University, 2015. [10] 王腾,宋斌. 黏土中射流破土机理的研究[J]. 水动力学研究与进展A辑,2018,33(3):337-343. WANG Teng,SONG Bin. Study on the breaking mechanism of jet in clay[J]. Hydrodynamic Research and Progress Series A,2018,33(3):337-343. [11] 李世杰,王艾伦,刘向军,等. 基于SPH算法土壤水射流冲击演化数值仿真研究[J]. 计算机仿真,2019,36(3):243-247,384. LI Shijie, WANG Allen, LIU Xiangjun, et al. Num-erical simulation of soil water jet impact evolution based on SPH algorithm[J]. Computer Simulation,2019,36(3):243-247,384. [12] 蒋斌,王艾伦,王计划.基于ALE方法淹没条件下水射流破土数值模拟与试验[J].中国农机化学报,2020,41(08):196-203. JIANG Bin,WANG Allen,WANG Jiji. Numerical simulation and experiment of water jet soil breaking under submersion conditions based on ALE method[J].Chinese Journal of Agricultural Mechanization,2020,41(08):196-203. [13] 董俊伟. 海底开沟机射流破土数值模拟研究[D].大连理工大学,2022. DONG Junwei. Numerical simulation study on ground breaking by submarine trencher jet[D].Dalian University of Technology,2022. [14] 周凡, 倪福生, 顾磊. 射流冲土过程常用数值计算软件的对比[J]. 机械设计与制造工程, 2017, 46(07): 50-53. ZHOU Fan, NI Fusheng, GU Lei. Comparison of common numerical calculation software for jet inrushing process[J]. Mechanical Design and Manufacturing Engineering, 2017, 46(07): 50-53. [15] 马飞, 宋志辉. 水射流动力特性及破土机理 [J]. 北京科技大学学报, 2006, (05): 413-416. Ma Fei, Song Zhihui. Dynamic characteristics and groundbreaking mechanism of water jet [J]. Journal of University of Science and Technology Beijing, 2006, (05): 413-416. [16] 高溦. 水力冲射海底开沟机的参数优化 [D]. 大连; 大连理工大学, 2008. GAO Wei. Parameter optimization of hydraulic flushing submarine trencher[D]. Dalian; Dalian University of Technology, 2008. [17] 李范山, 杜嘉鸿, 施小博, 等. 射流破土机理研究及其工程应用 [J]. 流体机械, 1997: 26-29. LI Fanshan, DU Jiahong, SHI Xiaobo, et al. Study on jet groundbreaking mechanism and its engineering application[J]. Fluid Mechanics, 1997: 26-29. [18] Machin J. Recent research on cable jet burial [J]. Marine Technology Society Journal, 2000, 34(3): 5-10. [19] Partheniades E. Erosion and deposition of cohesive soils [J]. Journal of the Hydraulics Division, 1965, 91(1): 105-139. [20] Albertson M L, Dai Y B, Jensen R A, et al. Diffusion of submerged jets[J]. Transactions of the American Society of Civil Engineers, 1950, 115(1): 639-664. [21] 郑志昌, 陈俊仁, 朱照宇. 南海海底土体物理力学特征及其地质环境初步研究 [J]. 水文地质工程地质, 2004, (04): 50-53+65. Zheng Zhichang, Chen Junren, Zhu Zhaoyu. Preliminary study on the physical and mechanical characteristics of seabed soil and its geological environment in the South China Sea [J]. Hydrogeology & Engineering Geology, 2004, (04): 50-53+65. [22] Trautmann C H, Kulhawy F H, Longo V J. CUFAD: A Computer Program for Compression and Uplift Foundaton Analysis and Design[C]; Foundation Engineering: Current Principles and Practices, 1987, 691-705. [23] 池寅, 时豫川, 吴海洋, 等. 水射流冲埋砂质海床土体数值模拟[J]. 振动与冲击, 2019, 38: 253-260. CHI Yin, SHI Yuchuan, WU Haiyang, et al. Numerical simulation of sandy seabed soil washed by water jet[J]. Journal of Vibration and Shock, 2019, 38: 253-260. [24] Lewis B A. Manual for LS-DYNA soil material model 147 [R]: United States. Federal Highway Administration, 2004. [25] 汪衡, 汪于程, 蔡金良, 等. HJC模型失效参数对侵彻能力影响的数值研究[J]. 兵器装备工程学报, 2020, 41: 150-155. Engineering, 2016, 42(1): 37-55. WANG Heng, WANG Yucheng, CAI Jinliang, et al. Numerical study on the influence of failure parameters on penetration capacity of HJC model[J]. Journal of Ordnance Equipment Engineering, 2020, 41: 150-155. Engineering, 2016, 42(1): 37-55.

PDF(3657 KB)

Accesses

Citation

Detail

段落导航
相关文章

/