可调频超结构充液管道的振动抑制

王可心1,2,杨智春1,赵天1,徐艳龙1,田玮1

振动与冲击 ›› 2024, Vol. 43 ›› Issue (13) : 180-189.

PDF(2318 KB)
PDF(2318 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (13) : 180-189.
论文

可调频超结构充液管道的振动抑制

  • 王可心1,2,杨智春1,赵天1,徐艳龙1,田玮1
作者信息 +

Vibration suppression of tunable frequency metastructure fluid-filled pipeline

  • WANG Kexin1,2, YANG Zhichun1, ZHAO Tian1, XU Yanlong1, TIAN Wei1
Author information +
文章历史 +

摘要

提出了一种附加可调频局域共振单元的超结构充液管道,通过调整局域共振单元的质量块在弹簧片上的安装位置,实现局域共振单元固有频率的可调性,进而实现充液管道在多个频率下的振动抑制。首先建立了附加可调频局域共振单元的超结构充液管道的结构动力学模型,采用伽辽金法推导了超结构充液管道的运动方程,然后利用模态分析方法建立了多频带隙的解析表达式。建立了相应的有限元模型,对其多频减振特性进行数值仿真,并开展了相应的验证实验。计算和实验结果验证了所提出的超结构充液管道存在多个带隙,在带隙范围内充液管道的弯曲振动被显著抑制。研究工作表明,使用可调频局域共振单元能够有效抑制充液管道多个频率下的振动,为其在多目标频段下充液管道的减振应用提供参考。

Abstract

A metastructure fluid-filled pipeline with tunable frequency local resonance units is proposed. By adjusting the installation position of mass blocks on the spring blades, the natural frequency of the local resonance units can be adjusted, thereby realizing vibration suppression of the fluid-filled pipeline at multiple frequencies. Firstly, the structural dynamics model of the metastructure fluid-filled pipeline with tunable frequency local resonance units is established, and the motion equation of the metastructure fluid-filled pipeline is derived using the Galerkin method. Then, the analytical expression for multiple bandgaps is obtained using modal analysis methods. A corresponding finite element model is established to numerically simulate the multi-frequency vibration reduction characteristics, followed by validation experiments. The computational and experimental results confirm the existence of multiple bandgaps in the proposed metastructure fluid-filled pipeline, leading to significant suppression of bending vibration within the bandgap range. This research demonstrates that the use of tunable frequency local resonance units can effectively suppress vibration of the fluid-filled pipeline at multiple frequencies, providing reference for vibration reduction applications in the pipeline across multiple target frequency ranges.

关键词

超结构充液管道 / 多频带隙 / 可调频局域共振单元 / 振动抑制

Key words

Metastructure fluid-filled pipeline / Multi-frequency bandgap / Tunable frequency local resonance unit / Vibration suppression

引用本文

导出引用
王可心1,2,杨智春1,赵天1,徐艳龙1,田玮1. 可调频超结构充液管道的振动抑制[J]. 振动与冲击, 2024, 43(13): 180-189
WANG Kexin1,2, YANG Zhichun1, ZHAO Tian1, XU Yanlong1, TIAN Wei1. Vibration suppression of tunable frequency metastructure fluid-filled pipeline[J]. Journal of Vibration and Shock, 2024, 43(13): 180-189

参考文献

[1] 任建亭, 姜节胜. 输流管道系统振动研究进展[J]. 力学进展, 2003, 33(3):313-324. REN Jianting,JIANG Jiesheng.Advances and trends on vibration of pipes conveying fluid[J].Advances in Mechanics, 2003, 33(3):313-324. [2] 党锡淇,黄幼玲.工程中的管道振动问题[J].力学与实践,1993(4):9-16. DANG Xiqi, HUANG Youling. The problem of pipeline vibration in engineering[J]. Mechanics in Engineering,1993(4):9-16. [3] 尹剑飞,蔡力,方鑫,等.力学超材料研究进展与减振降噪应用[J].力学进展, 2022,52(3):508-586. YIN Jianfei,CAI Li,FANG Xin,et al. Review on research progress of mechanical metamaterials and their applications in vibration and noise control[J]. Advances in Mechanics,2022,52(3):508-586. [4] Koo G H, Park Y S. Vibration reduction by using periodic supports in a piping system[J]. Journal of Sound and Vibration, 1998, 210(1): 53-68. [5] Sorokin S V, Ershova O A. Plane wave propagation and frequency band gaps in periodic plates and cylindrical shells with and without heavy fluid loading[J]. Journal of Sound and Vibration, 2004, 278(3): 501-526. [6] Yu D, Wen J, Liu Y, et al. Flexural vibration band gaps in periodic pipe system conveying fluid[C/OL]//14th International Congress on Sound and Vibration 2007, ICSV 2007: Vol. 2. Australian Acoustical Society, 2007: 1405-1411. [7] Yu D, Wen J, Zhao H, et al. Vibration reduction by using the idea of phononic crystals in a pipe-conveying fluid[J]. Journal of Sound and Vibration, 2008, 318(1-2): 193-205. [8] Yu D, Wen J, Shen H, et al. Flexural vibration band gaps in periodic pipe system conveying fluid with external loads[J/OL]. 16th International Congress on Sound and Vibration 2009, ICSV 2009, 2009, 1: 562-568. [9] Shen H, Wen J, Yu D, et al. The vibrational properties of a periodic composite pipe in 3D space[J]. Journal of Sound and Vibration, 2009, 328(1-2): 57-70. [10] 沈惠杰. 基于带隙理论的管路系统振动特性研究[D]. 国防科学技术大学, 2009. [11] 沈惠杰,温激鸿,郁殿龙,等.基于Timoshenko梁模型的周期充液管路弯曲振动带隙特性和传输特性[J].物理学报,2009,58(12):8357-8363. SHEN Huijie, WEN Jihong, YU Dianlong, et al. Flexural vibration property of periodic pipe system conveying fluid based on Timoshenko beam equation. Acta Physica Sinica, 2009, 58(12): 8357-8363. [12] 沈惠杰,温激鸿,郁殿龙,温熙森. 充液周期管路轴向振动特性研究[C]//.第十二届船舶水下噪声学术讨论会论文集.,2009:178-184. [13] Wen J H, Shen H J, Yu D L, et al. Theoretical and experimental investigation of flexural wave propagating in a periodic pipe with fluid-filled loading[J]. Chinese Physics Letters, 2010, 27(11): 114301. [14] 沈惠杰,温激鸿,郁殿龙,温熙森. 基于人工周期结构带隙理论的海水管路系统结构振动控制[C]//.第九届中国CAE工程分析技术年会专辑.,2013:15-19. [15] 沈惠杰. 基于声子晶体理论的海水管路系统声振控制[D].国防科学技术大学,2015. [16] 魏振东,李宝仁,杜经民,等.基于声子晶体理论的舰船液压管路支承用隔振器轴向振动带隙特性研究[J].机械工程学报,2016,52(15):91-98. WEI Zhendong, LI Baoren, DU Jingmin,et al.Research on the longitudinal vibration band gaps of isolator applied to ship hydraulic pipe-support based on the theory of phononic crystals[J].Journal of Mechanical Engineering, 2016, 52(15): 91-98. [17] 杜春阳,郁殿龙,温激鸿,等.含功能梯度材料的周期管路振动特性研究[J].振动与冲击,2018,37(4):170-176. DU Chunyang , YU Dianlong , WEN Jihong ,et al.Vibration property of periodic pipe with functionally graded materials[J].Journal of Vibration and Shock,2018,37(4):170-176. [18] 吴江海,尹志勇,孙玉东.周期支撑充液管路轴向振动特性分析[J].中国造船,2020,61(2):136-143. WU Jianghai,YIN Zhiyong,SUN Yudong.Vibration analysis of fluid-filled pipes with periodic axial supports[J].Shipbuilding of China,2020,61(2):136-143. [19] 吴江海,侯希晨,尹志勇,等.周期支撑管路横向振动波传播特性分析[J].船舶力学,2021,25(10):1404-1411. WU Jianghai,HOU Xichen,YIN Zhiyong,et al.Wave propagation analysis of transverse vibration of pipeline with periodic supports[J].Journal of Ship Mechanics,2021,25(10):1404-1411. [20] Liang F, Yang X D. Wave properties and band gap analysis of deploying pipes conveying fluid with periodic varying parameters[J]. Applied Mathematical Modelling, 2020, 77: 522-538. [21] 胡兵. 流固耦合声子晶体管路系统振动带隙及冲击特性研究[D].国防科技大学, 2023. DOI:10.27052/d.cnki.gzjgu.2020.000894. [22] Wu J, Zhu H, Sun Y, et al. Reduction of flexural vibration of a fluid-filled pipe with attached vibration absorbers[J]. International Journal of Pressure Vessels and Piping, 2021, 194: 104525. [23] Zhou X, Xu Y, Liu Y, et al. Extending and lowering band gaps by multilayered locally resonant phononic crystals[J]. Applied Acoustics, 2018, 133: 97-106. [24] El-Borgi S, Fernandes R, Rajendran P, et al. Multiple bandgap formation in a locally resonant linear metamaterial beam: Theory and experiments[J]. Journal of Sound and Vibration, 2020, 488: 115647. [25] Sugino C, Xia Y, Leadenham S, et al. A general theory for bandgap estimation in locally resonant metastructures[J]. Journal of Sound and Vibration, 2017, 406: 104-123. [26] 张义民. 机械振动[M]. 第2版. 北京: 清华大学出版社, 2019.

PDF(2318 KB)

174

Accesses

0

Citation

Detail

段落导航
相关文章

/