基于CEEMDAN多尺度改进排列熵和SVM的空化噪声特征提取

兀成龙,高翰林,朱丹丹,李亚安

振动与冲击 ›› 2024, Vol. 43 ›› Issue (13) : 190-197.

PDF(2778 KB)
PDF(2778 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (13) : 190-197.
论文

基于CEEMDAN多尺度改进排列熵和SVM的空化噪声特征提取

  • 兀成龙,高翰林,朱丹丹,李亚安
作者信息 +

Feature extraction of cavitation noise based on CEEMDAN multi-scale improved permutation entropy and SVM

  • WU Chenglong, GAO Hanlin, ZHU Dandan, LI Ya’an
Author information +
文章历史 +

摘要

当水下航行器处于高速航行时就会形成空化噪声,所产生的噪声会严重影响水下航行器的性能和安全。螺旋桨噪声包含着丰富的空化信息,是识别空化状态的有效手段。针对改进排列熵在单尺度下对原信号进行分析,无法有效区分不同空化状态,提出了将改进排列熵与自适应噪声完备经验模态分解(CEEMDAN)相结合的空化噪声特征提取方法。首先,采用自适应噪声完备经验模态分解(CEEMDAN)方法对水下航行器螺旋桨的空化噪声进行分解,提取具有空化特征的固有模态函数(IMF)分量;其次,选取相关系数最高的IMF分量并计算其多尺度改进排列熵(MIPE);最后,基于多尺度改进排列熵,建立支持向量机的特征分类模型。仿真和实验结果表明,该方法具有更好的可分性。

Abstract

When underwater vehicles are sailing at high speeds, cavitation noise will form, which will seriously affect the performance and safety of underwater vehicles. Propeller noise contains rich cavitation information and is an effective means of identifying cavitation states. A cavitation noise feature extraction method combining improved permutation entropy with adaptive noise complete empirical mode decomposition (CEEMDAN) is proposed to effectively distinguish different cavitation states in analyzing the original signal at a single scale. Firstly, the adaptive noise complete empirical mode decomposition (CEEMDAN) method is used to decompose the cavitation noise of the propeller of an underwater vehicle, and the intrinsic mode function (IMF) components with cavitation characteristics are extracted; Secondly, select the IMF component with the highest correlation coefficient and calculate its multi-scale improved permutation entropy (MIPE); Finally, based on multi-scale improved permutation entropy, a feature classification model for support vector machines is established. The simulation and experimental results show that this method has better separability.

关键词

MIPE / CEEMDAN / 空化噪声;特征提取

Key words

MIPE / CEEMDAN / Cavitation noise / feature extraction

引用本文

导出引用
兀成龙,高翰林,朱丹丹,李亚安. 基于CEEMDAN多尺度改进排列熵和SVM的空化噪声特征提取[J]. 振动与冲击, 2024, 43(13): 190-197
WU Chenglong, GAO Hanlin, ZHU Dandan, LI Ya’an. Feature extraction of cavitation noise based on CEEMDAN multi-scale improved permutation entropy and SVM[J]. Journal of Vibration and Shock, 2024, 43(13): 190-197

参考文献

[1] Chang Y C,Hu C N,Tu J C, et al. Experimental investigation and numerical prediction of cavitation incurred on propeller surfaces [J]. Journal of Hydrodynamics,2010,22(1):722-727. [2] Aktas B,Atlar M,Turkmen S,et al. Propeller cavitation noise investigations of a research vessel using medium size cavitation tunnel tests and full-scale trials [J]. Ocean Engineering,2016, 120:122–135. [3] 马飞. 螺旋桨空化及噪声性能研究[D].哈尔滨工业大学,2014. [4] BRENNEN C E. Cavitation and bubble dynamics [M]. Oxford: Oxford University Press, 1995. [5] Li Q Y, Zong C Y, et al. Numerical and experimental analysis of the cavitation characteristics of orifice plates under high-pressure conditions based on a modified cavitation model[J].International Journal of Heat and Mass Transfer,2023,203:123782. [6] 朱显玲,齐江辉等.斜流中七叶侧斜螺旋桨水动力及空泡性能研究[J].推进技术,2022,43(8):425-433. ZHU xianling,QI jianghui,et al. Hydrodynamic performance and cavitation characteristics of seven blade propeller with skew in oblique flow[J].Journal of Propulsion technology,2022,43(8):425-433. [7] 许彬, 王浩等.绕水翼空化流固耦合特性研究现状与展望[J].排灌机械工程学报,2023,41(08):809-817. XU bing, WANG hao,et al.Current status and prospects of research on fluid-structure interaction characteristics of cavitating flow around hydrofoils[J].Journal of Drainage and Irrigation Machinery Engineering, 2023,41(08):809-817. [8] CHANG Y C,HU C N,et al.Experimental investigation and numerical prediction of cavitation incurred on propeller surfaces [J].Journal of Hydrodynamics,2010(5):764-769. [9] Xie D, Esmaiel H,et al.Feature Extraction of Ship-Radiated Noise Based on Enhanced Variational Mode Decomposition, Normalized Correlation Coefficient and Permutation Entropy [J]. Entropy,2020,22(4):468. [10] 周宇峰,程景全.小波变换及其应用[J].物理,2008(1): 24-32. ZHOU Yufeng,CHENG Jingquan. Wavelet transform and its application [J]. Physics ,2008(1):24-32. [11] HUANG N E,SHEN Z,LONG S R,et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis [J]. Proceedings of the Royal Society of London, Series A: Mathematical, Physical and Engineering Sciences,1998,454 ( 1971 ): 903-995. [12] WU Z H, HUANG N E. Ensemble empirical mode decomposition: a noise-assisted data analysis method[J]. Advances in Adaptive Data Analysis,2009,1(1):1-41. [13] DRAGOMIRETSKIY K, ZOSSO D. Variational mode decomposition[J].IEEE Trans Signal Process,2014,62 (3):531-544 [14] VANRAJ S, DHAMI S, PABLA B S. Non-contact incipient fault diagnosis method of fixed-axis gearbox based on CEEMDAN [J]. Royal Society Open Science, 2017, 4(8):2054-2073. [15] ZHANG J C, REN W K, JIN N D. Rescaled range permutation entropy: a method for quantifying the dynamical complexity of extreme volatility in chaotic time series [J]. Chinese Physics Letters,2020,37(9):30-35. [16] 李永健,宋浩等.基于改进多尺度排列熵的列车轴箱轴承诊断方法研究[J].铁道学报,2020,42(01):33-39. LI yongjian,SONG hao,et al.A study on fault diagnosis method for train axle box bearing based on modified multiscale permutation entropy [J]. Journal of the China Railway Society, 2020,42(01):33-39. [17] 李瑞,范玉刚.基于CEEMDAN多尺度排列熵和SO-RELM的高压隔膜泵单向阀故障诊断[J].振动与冲击,2023,42(05):127-135. LI rui,FAN yugang. Fault diagnosis of one-way valve of high-pressure diaphragm pump based on CEEMDAN multi-scale permutation entropy and SO-RELM [J].Journal of Vibration and Shock, 2023,42(05):127-135. [18] 蒋玲莉,谭鸿创等.基于CEEMDAN排列熵与SVM的螺旋锥齿轮故障识别[J].振动,测试与诊断2021,41(01):33-40+198-199. JIANG linli , TAN hongchuan ,et al.Fault identification of spiral bevel gears based on CEEMDAN arrangement entropy and SVM [J]. Journal of Vibration, Measurement & Diagnosis, 2021,41(01): 33-40+198-199. [19] Yang L. An empirical mode decomposition approach to feature extraction of ship-radiated noise. 2009 4th IEEE Conference on Industrial Electronics and Applications, Xi'an, China, 2009, pp:3682-3686. [20] 杨宏,李亚安等.基于集合经验模态分解的舰船辐射噪声能量分析[J].振动与冲击,2015,34(16):55-59. YANG hong, LI yaan. Energy analysis of ship-radiated noise based on ensemble empirical mode decomposition[J]. Journal of Vibration and Shock,2015,34(16):55-59. [21] Li Y X, Li Y A,et al. Feature extraction of ship-radiated noise based on permutation entropy of the intrinsic mode function with the highest energy. Entropy ,2016,18(11):393.

PDF(2778 KB)

188

Accesses

0

Citation

Detail

段落导航
相关文章

/