主动磁轴承系统建模与准谐振自抗扰振动抑制

孙建忠1,宋伟皓1,范鹏昊1,陈昕航2,王昊辰1

振动与冲击 ›› 2024, Vol. 43 ›› Issue (13) : 227-236.

PDF(2456 KB)
PDF(2456 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (13) : 227-236.
论文

主动磁轴承系统建模与准谐振自抗扰振动抑制

  • 孙建忠1,宋伟皓1,范鹏昊1,陈昕航2,王昊辰1
作者信息 +

Modeling of AMB system and quasi-resonant self-rejecting disturbance vibration suppression

  • SUN Jianzhong1, SONG Weihao1, FAN Penghao1, CHEN Xinhang2, WANG Haochen1
Author information +
文章历史 +

摘要

为了建立更准确的磁轴承数学模型,优化其控制性能,本文对磁轴承的电磁力非线性特性和系统固有干扰源进行了分析,通过转子动力学分析建立了含干扰源的主动磁轴承径向耦合系统模型。为抑制系统的振动,提出了一种磁轴承准谐振自抗扰振动抑制方法。通过扩张状态观测器实现系统解耦,简化控制流程,提升系统抗干扰能力;在此基础上,并入准谐振控制器对正弦周期性振动进行抑制。与传统方法相比,该方法控制结构简单,所需整定参数较少。仿真与实验结果表明,所提方法可以有效降低转子位移振动幅值,系统内常见的1、3、5倍频周期性振动得到显著抑制,具有良好的振动抑制效果。

Abstract

For establishing a more accurate mathematical model of AMB and optimize its control performance, the nonlinear characteristics of electromagnetic force and the inherent interference source of this system are analyzed. The radial coupling system model of AMB with interference source is established through the rotor dynamics analysis. A quasi-resonant active disturbance rejection vibration suppression method is proposed to restrain the vibration. The extended state observer is used to decouple the system, simplify the control flow and improve the anti-interference ability. On this basis, the quasi-resonant controller is incorporated to restrain the sinusoidal periodic vibration. Compared with the traditional method, this method has a simple structure and requires less tuning parameters. The simulation and test results show that the proposed method can effectively reduce the amplitude of rotor displacement fluctuation, the common periodic vibration at fundamental frequency, triple frequency and quintuple frequency are significantly suppressed, the vibration suppression effect is good.

关键词

主动磁轴承 / 转子动力学分析 / 振动抑制 / 扩张状态观测器 / 准谐振控制器

Key words

active magnetic bearing(AMB) / rotor dynamics analysis / vibration suppression / extended state observer / quasi-resonant controller

引用本文

导出引用
孙建忠1,宋伟皓1,范鹏昊1,陈昕航2,王昊辰1. 主动磁轴承系统建模与准谐振自抗扰振动抑制[J]. 振动与冲击, 2024, 43(13): 227-236
SUN Jianzhong1, SONG Weihao1, FAN Penghao1, CHEN Xinhang2, WANG Haochen1. Modeling of AMB system and quasi-resonant self-rejecting disturbance vibration suppression[J]. Journal of Vibration and Shock, 2024, 43(13): 227-236

参考文献

[1] SCHWEITZER G , MASLEN E H. 磁悬浮轴承: 理论, 设计及旋转机械应用[M]. 徐旸, 张剀, 赵雷 译. 北京: 机械工业出版社, 2012. SCHWEITZER G , MASLEN E H. Magnetic Bearings: Theory, Design, and Application to Rotating Machinery[M]. Beijing: China Machine Press, 2012. [2] GONG L , ZHU C . Vibration Suppression for Magnetically Levitated High-Speed Motors Based on Polarity Switching Tracking Filter and Disturbance Observer[J]. IEEE Transactions on Industrial Electronics, 2021, 68(6): 4667-4678. [3] 黄立权, 王维民, 苏奕儒, 等. 刚性转子自动平衡寻优控制方法与实验研究[J]. 振动与冲击, 2011, 30(05): 101-105. HUANG Liquan, WANG Weimin, SU Yiru, et al. Optimal control method and test for rigid rotor auto-balancing[J]. Journal of Vibration and Shock, 2011, 30(05):101-105. [4] ZHOU T, ZHU C. Robust Proportional-Differential Control via Eigenstructure Assignment for Active Magnetic Bearings-Rigid Rotor Systems[J]. IEEE Transactions on Industrial Electronics, 2022, 69(7): 6572-6585. [5] PRASAD K N V, NARAYANAN G. Electromagnetic Bearings With Power Electronic Control for High-Speed Rotating Machines: Review, Analysis, and Design Example[J]. IEEE Transactions on Industry Applications, 2021, 57(5): 4946-4957. [6] CUI P, DU L, ZHOU X, et al. Synchronous Vibration Moment Suppression for AMBs Rotor System in Control Moment Gyros Considering Rotor Dynamic Unbalance[J]. IEEE/ASME Transactions on Mechatronics, 2022, 27(5): 3210-3218. [7] LI J, LIU G, CUI P, et al. An Improved Resonant Controller for AMB-Rotor System Subject to Displacement Harmonic Disturbance[J]. IEEE Transactions on Power Electronics, 2022, 37(5): 5235-5244. [8] NOSHADI A, SHI J, LEE W S, et al.System Identification and Robust Control of Multi-Input Multi-Output Active Magnetic Bearing Systems[J]. IEEE Transactions on Control Systems Technology, 2016, 24(4): 1227-1239. [9] HAN B, CHEN Y, LI M, et al. Stable Control of Nutation and Precession for the Radial Four-Degree-of-Freedom AMB -Rotor System Considering Strong Gyroscopic Effects[J]. IEEE Transactions on Industrial Electronics, 2021, 68(11): 11369-11378. [10] 房建成, 张会娟, 刘虎. 磁悬浮刚性转子系统振动机理分析与动力学建模[J]. 控制理论与应用, 2014, 31(12): 1707-1713. FANG Jiancheng, ZHANG Huijuan, LIU Hu. Vibration mechanism analysis and dynamic model development of magnetically suspended rigid rotor system[J]. Control Theory & Applications, 2014, 31(12): 1707-1713. [11] CAI K, DENG Z, PENG C, et al. Suppression of Harmonic Vibration in Magnetically Suspended Centrifugal Compressor Using Zero-Phase Odd-Harmonic Repetitive Controller[J]. IEEE Transactions on Industrial Electronics, 2020, 67(9): 7789-7797. [12] SUN M, ZHENG S, WANG K, et al. Filter Cross-Feedback Control for Nutation Mode of Asymmetric Rotors With Gyroscopic Effects[J]. IEEE/ASME Transactions on Mechatronics, 2019, 25(1): 248-258. [13] 武涵, 徐春广, 肖定国, 等. 五自由度磁轴承系统的α阶逆系统解耦控制[J]. 北京理工大学学报, 2010, 30(09):1065-1069. WU H, XU C G, XIAO D G, et al. Decoupling Control of 5-Dof Magnetic Bearing SystemUsing α Order Inverse System Theory[J]. Transactions of Beijing Institute of Technology, 2010, 30(09):1065-1069. [14] WANG S, ZHU H, WU M, et al. Active Disturbance Rejection Decoupling Control for Three-Degree-of- Freedom Six-Pole Active Magnetic Bearing Based on BP Neural Network[J]. IEEE Transactions on Applied Superconductivity, 2020, 30(4): 1-5, [15] LI J, LIU G, CUI P, et al. An Improved Resonant Controller for AMB-Rotor System Subject to Displacement Harmonic Disturbance[J]. IEEE Transactions on Power Electronics, 2022, 37(5): 5235-5244. [16] 崔培玲, 赵光再, 房建成, 等. 基于相移陷波器的磁轴承不平衡振动全频自适应控制[J]. 振动与冲击, 2015, 34(20): 16-20+36. CUI Peiling, ZHAO Guangzai, FANG Jiancheng, et al. Adaptive control of unbalance vibration for magnetic bearings based on phase-shift notch filter within the whole frequency range[J]. Journal of Vibration and Shock, 2015, 34(20): 16-20+36. [17] HE J, DENG Z, PENG C., et al. Reduction of the High-Speed Magnetically Suspended Centrifugal Compressor Harmonic Vibration Using Cascaded Phase-Shifted Notch Filters[J]. IEEE Sensors Journal, 2021, 21(2): 1315-1323. [18] LI J, LIU G, CUI P, et al. Suppression of Harmonic Vibration in AMB-Rotor Systems Using Double-Input Adaptive Frequency Estimator[J]. IEEE Transactions on Industrial Electronics, 2022, 69(3): 2986-2995. [19] REN G P, ZHANG H T, WU Y, et al. A General Double-Input Synchronous Signal Processor for Imbalanced Vibration Mitigation in AMB-Rotor Systems[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2023, 53(6): 3823-3832. [20] 张海洋, 许海平, 方程, 等. 基于比例积分-准谐振控制器的直驱式永磁同步电机转矩脉动抑制方法[J]. 电工技术学报, 2017, 32(19): 41-51. ZHANG Haiyang, XU Haiping, FANG Chang, et al. Torque Ripple Suppression Method of Direct-Drive Permanent Magnet Synchronous Motor Based on Proportional-Integral and Quasi Resonant Controller[J]. Transactions of China Electrotechnical Society, 2017, 32(19): 41-51.

PDF(2456 KB)

153

Accesses

0

Citation

Detail

段落导航
相关文章

/