基于路面激励预瞄范围切换的主动悬架滑模控制

寇发荣,陈奕晓,张新乾,王倩磊,刘朋涛

振动与冲击 ›› 2024, Vol. 43 ›› Issue (13) : 237-247.

PDF(3478 KB)
PDF(3478 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (13) : 237-247.
论文

基于路面激励预瞄范围切换的主动悬架滑模控制

  • 寇发荣,陈奕晓,张新乾,王倩磊,刘朋涛
作者信息 +

ctive suspension sliding mode control based on road excitation preview range switching

  • KOU Farong, CHEN Yixiao, ZHANG Xinqian, WANG Qianlei, LIU Pengtao
Author information +
文章历史 +

摘要

针对不同行驶工况下悬架控制力与实际路面激励反馈的不匹配问题,提出一种切换路面激励预瞄范围的主动悬架滑模控制方法。搭建由激光雷达、惯性测量单元和GPS (Global Positioning System) 组成的路面预瞄系统,采集原始路面信息并完成数据坐标转换;建立车轮运动轨迹数学模型,根据该数学模型设计了预瞄范围切换的路面激励识别方法;以理想天棚模型为参考模型,设计主动悬架滑模控制器;仿真分析了直线工况和转向工况下的悬架动态性能。仿真结果表明,直线工况下,预瞄范围切换的主动悬架与预瞄范围固定的主动悬架系统动态性能一致;转向工况下,相比于预瞄范围固定的悬架,预瞄范围切换的悬架系统在簧载质量加速度均方根值和轮胎动载荷均方根值分别降低了8.42%和8.76%,验证了所提出控制方法对悬架动态性能提升的有效性。

Abstract

Aiming at the matching of suspension control force and actual road excitation under different driving conditions, a sliding mode control method of active suspension based on switching preview range of pavement excitation was designed. The road preview system composed of lidar, inertial measurement unit and GPS (Global Positioning System) was set up to collect the original road information and complete the data coordinate transformation; the mathematical model of wheel trajectory was established, and the road surface excitation identification method of switching preview range was designed according to the mathematical model; taking the ideal sky-hook model as the reference model, the sliding mode controller of active suspension was designed; the dynamic performance of suspension under linear and steering conditions was simulated and analyzed. The simulation results show that under linear conditions, the dynamic performance of the active suspension with preview range switching is consistent with the active suspension system with fixed preview range; and under the steering condition, compared with the sliding mode control with fixed preview range, the RMS of spring mass acceleration and tire dynamic load of the suspension system with switching preview range are reduced by 8.42% and 8.76%, respectively. The effectiveness of the control method to improve the dynamic performance of the suspension is verified.

关键词

主动悬架 / 路面激励 / 激光雷达 / 转向工况 / 滑模控制

Key words

active suspension / pavement excitation / lidar / steering condition / sliding mode control

引用本文

导出引用
寇发荣,陈奕晓,张新乾,王倩磊,刘朋涛. 基于路面激励预瞄范围切换的主动悬架滑模控制[J]. 振动与冲击, 2024, 43(13): 237-247
KOU Farong, CHEN Yixiao, ZHANG Xinqian, WANG Qianlei, LIU Pengtao. ctive suspension sliding mode control based on road excitation preview range switching[J]. Journal of Vibration and Shock, 2024, 43(13): 237-247

参考文献

[1] 寇发荣, 贺嘉杰, 李孟欣, 等. 基于路面识别的电磁混合式悬架自适应模糊控制 [J]. 振动与冲击, 2023, 42 (2): 303-311. KOU Farong, HE Jiajie, LI Mengxin, et al. Adaptive fuzzy control of an electromagnetic hybrid suspension based on road recognition [J]. Journal of Vibration and Shock, 2023, 42 (2): 303-311. [2] DING R K, WANG R C, MENG X P, et al. Intelligent switching control of hybrid electromagnetic active suspension based on road identification [J]. Mechanical Systems and Signal Processing, 2021, 152: 107355. [3] 李以农, 朱哲葳, 郑玲, 等. 基于路面识别的主动馈能悬架多目标控制与优化 [J]. 交通运输工程学报, 2021, 21 (2): 129-137. LI Yinong, ZHU Zhewei, ZHENG Ling, et al. Multi-objective control and optimization of active energy-regenerative suspension based on road recognition [J]. Journal of Traffic and Transportation Engineering, 2021, 21 (2): 129-137. [4] 张志勇, 王建波, 胡林, 等. 考虑路面预瞄信息和参数不确定性的空气悬架半主动控制 [J]. 振动与冲击, 2020, 39 (23): 21-29. ZHANG Zhiyong, WANG Jianbo, HU Lin, et al. Semi-active control of air suspension considering pavement preview information and parametric uncertainty [J]. Journal of Vibration and Shock, 2020, 39 (23): 21-29. [5] KAVIANIPOUR O, MONTAZERI - GH M, MOAZAMIZADEH M, et al. Road profile measurement using the two degrees of freedom response-type mechanism [J]. Mecahnical Engineering Science, 2015, 229 (6): 1074-1087. [6] 杨艺, 陈龙, 汪若尘, 等. 车辆半主动悬架广义天棚理论控制研究 [J]. 振动与冲击, 2021, 40 (22): 66-74. YANG Yi, CHEN Long, WANG Ruochen, et al. Semi-active suspension control based on the general theory of skyhook control [J]. Journal of Vibration and Shock, 2021, 40 (22): 66-74. [7] 庞辉, 梁军, 王建平, 等. 考虑系统不确定性的车辆主动悬架自适应模糊滑模控制 [J]. 振动与冲击, 2018, 37 (15): 261-269. PANG Hui, LIANG Jun, WANG Jianping, et al. Adaptive fuzzy sliding mode control for vehicle active suspension systems considering system uncertainty [J]. Journal of Vibration and Shock, 2018, 37 (15): 261-269. [8] 刘浪, 张志飞, 鲁红伟, 等. 基于增广卡尔曼滤波并考虑车辆加速度的路面不平度识别 [J]. 汽车工程, 2022, 44 (2): 247-255. LIU Lang, ZHANG Zhifei, LU Hongwei, et al. Road Roughness Identification Based on Augmented Kalman Filtering with Consideration of Vehicle Acceleration [J]. Automotive Engineering, 2022, 44 (2): 247-255. [9] 孙晋伟, 秦也辰, 王振峰, 等. 基于路面识别的非线性悬架系统自适应控制 [J]. 东北大学学报(自然科学版), 2018, 39 (9): 1299-1303. SUN Jinwei, QIN Yechen, WANG Zhenfeng, et al. Adaptive Control of the Nonlinear Suspension System Based on Road Estimation [J]. Journal of Northeastern University(Natural Science), 2018, 39 (9): 1299-1303. [10] LIANG G. Q., ZHAO T, SHANGGUAN Z W, et al. Experimental study of road identification by LSTM with application to adaptive suspension damping control [J]. Mechanical Systems and Signal Processing, 2022, 177: 109197. [11] WANG S F, KODAGODA S, SHI L, et al. Lidar-based road terrain recognition for passenger vehicles [J]. Vehicle Design, 2017, 74 (2): 153-165. [12] SABERY M S, BYSTROV A, GARDNER P, et al. Road Surface Classification Based on Radar Imaging Using Convolutional Neural Network [J]. IEEE SENSORS JOURNAL, 2021, 21 (17): 18725 - 18732. [13] 刘秋, 孙晋伟, 张华, 等. 基于卷积神经网络的路面识别及半主动悬架控制 [J]. 兵工学报, 2020, 41 (8): 1483-1493. LIU Qiu, SUN Jinwei, ZHANG Hua, et al. Road identification and semi-active suspension control based on convolutional neural network [J]. Acta Armamentarii, 2020, 41 (8): 1483-1493. [14] NI T, LI W H, ZHAO D X, et al. Road profile estimation using a 3D sensor and intelligent vehicle [J]. Sensor, 2020, 20: 3676; doi:10.3390/s20133676. [15] 陈潇凯, 曾洺锴, 刘向, 等. 基于VSL-MPC的半主动悬架预瞄控制研究 [J]. 汽车工程, 2022, 44 (10): 1537-1546. CHEN Xiaokai, ZENG Mingkai, LIU Xiang, et al. Research on semi-active suspension preview control based on VSL-MPC [J]. Automotive Engineering, 2022, 44 (10): 1537-1546. [16] GOHRLE C, SCHINDLER A, WAGNER A, et al. Road profile estimation and preview control for low-bandwidth active suspension system [J]. IEEE/ ASME Transactions on Mechatronics, 2014, 20: 2299-2310. [17] 寇发荣, 胡凯仑, 陈若晨, 等. 基于ResNeSt网络路面状态识别的主动悬架模型预测控制 [J]. 控制与决策: 1-9.DOI:10.13195/j.kzyjc.2022.1392. KOU Farong, HU Kailun, CHEN Ruochen, et al. Model predictive control of active suspension based onr surface condition recognition by ResNeSt [J]. Control and Decision: 1-9.DOI:10.13195/j.kzyjc.2022.1392. [18] 李文航, 倪涛, 赵丁选, 等. 基于集合卡尔曼滤波的高机动救援车辆主动悬挂控制方法 [J]. 吉林大学学报(工学版), 2022, 52 (12): 2816-2826. LI Wenhang, NI Tao, ZHAO Dingxuan, et al. Active suspensioncontrol method of high mobility rescue vehicle based on ensemble Kalman filter [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52 (12): 2816-2826. [19] KOU F R, ZHANG X Q, XU J N, et al. Solution of steering angle based on homogeneous transformation [J]. Proceedings of the Institution of Mechanical Engineers. Part D, Journal of automobile engineering, 2022, 236 (14): 3124-3134.

PDF(3478 KB)

Accesses

Citation

Detail

段落导航
相关文章

/