Calculation method for power parameters of damage element of shell charge
ZHANG Sheng1,2, LI Shutao1, WANG Zhenqing2, CHEN Yeqing1
Author information+
1.National Defense Engineering Research Institute, Academy of Military Sciences, Beijing 100036, China;
2.College of Aerospace and Architecture Engineering, Harbin Engineering University, Harbin 150001, China
After the cased charge explodes, damage elements such as shock waves and fragments will be generated. Improving the calculation accuracy of damage element power parameters is of great significance for research on weapon destructive effects and engineering protection. In order to improve the calculation accuracy of power parameters of fragments and shock waves, a more accurate calculation formula for the initial velocity of fragment was proposed based on the modified energy conservation equation by analyzing the distribution law of cased charge explosion energy. The equivalent charge mass conversion method was used to calculate the equivalent charge mass of the shock waves generated by the cased charge explosion, by analyzing the formation process of the initial shock wave of the cased charge, a theoretical calculation model of the shock wave power parameters was established, and the scientificity and reliability of the calculation model were verified through experimental data. Through the established theoretical model, the calculation formula for the distance from the detonation source when the two damage elements overlap is derived, and the influencing factors are quantitatively analyzed. Research shows that the accuracy of the calculation method in this paper is better than the traditional calculation method of damage element power parameters, the errors in initial velocity of fragment, the overpressure peak value of shock waves, the arrival time of wave front and the experiment are 3%, 4.9% and 1.1%, respectively. The movement distance when the fragment barrage overlaps with the shock wave front is directly proportional to the explosive energy (detonation heat) and inversely proportional to the casing thickness (charge mass ratio).
ZHANG Sheng1,2, LI Shutao1, WANG Zhenqing2, CHEN Yeqing1.
Calculation method for power parameters of damage element of shell charge[J]. Journal of Vibration and Shock, 2024, 43(13): 25-34
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Grisaro, Hezi Y., Benamou, David., Dancygier, Avraham N. Investigation of blast and fragmentation loading characteristics – Field tests[J]. Engineering Structures, 2018, 167: 363-375.
[2] 甘露, 陈力, 宗周红, 等. 近距离爆炸比例爆距的界定标准及荷载模型[J]. 爆炸与冲击, 2021, 41(06): 130-141.
GAN Lu, CHEN Li, ZONG Zhou-hong, et al. Definition of scaled distance of close-in explosion and blast load calculation model [J]. Explosion and Shock Waves, 2021, 41(06): 130-141.
[3] Leppaenen, Joosef. Experiments and numerical analyses of blast and fragment impacts on concrete[J]. International Journal of Impact Engineering, 2005, 31(7): 843-860.
[4] Girhammar, UA. Brief review of combined blast and fragment loading effects[R]: National Fortifications Administration, Eskilstuna, Sweden, 1990.
[5] Nyström, Ulrika, Gylltoft, Kent. Numerical studies of the combined effects of blast and fragment loading[J]. International Journal of Impact Engineering, 2009, 36(8): 995-1005.
[6] 蒋志刚, 白志海, 严波, 宋殿义. 金属薄板与加筋板爆炸冲击响应研究进展[J]. 振动与冲击, 2010, 29(11): 41-46+252.
JIANG Zhi-gang, BAI Zhi-hai, YAN Bo, et al. Advances in study on impact response of thin and stiffened metal plates under blast loading [J]. Journal of Vibration and Shock, 2010, 29(11): 41-46+252.
[7] 王晓强, 朱锡. 舰船用钢的抗弹道冲击性能研究进展[J]. 中国造船, 2010, 51(01): 227-236.
WANG Xiao-qiang, ZHU Xi. Review on ballistic impact resistance of ship building steel [J]. Shipbuilding of China, 2010, 51(01): 227-236.
[8] 陈长海, 侯海量, 李万, 等. 破片式战斗部空中爆炸下冲击波与破片先后作用的临界爆距研究[J]. 海军工程大学学报, 2018, 30(2): 18-23.
CHEN Chang-hai, HOU Hai-liang, LI Wang, et al. Critical stand-off distance of action order for air-blast waves and fragments by fragmentation warheads exploding in air [J]. Journal of Naval University of Engineering, 2018, 30(2): 18-23.
[9] 陈长海, 侯海量, 朱锡, 等. 破片式战斗部空中爆炸下冲击波与破片的耦合作用[J]. 高压物理学报, 2018, 32(1): 145-153.
CHEN Chang-hai, HOU Hai-liang, ZHU Xi, et al. Coupling action spans for air-blast waves and fragments by fragmentation warheads exploding in air [J]. Chinese Journal of High Pressure Physics, 2018, 32(1): 145-153.
[10] 龚超安, 陈智刚, 印立魁. 杀爆战斗部破片与冲击波运动规律研究[J]. 弹箭与制导学报, 2016, 36(2): 33-36.
GONG Chao-an, CHEN Zhi-gang, YIN Li-kui. Research on motion law of fragment and shock wave of blast fragmentation warhead [J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2016, 36(2): 33-36.
[11] Gurney, R. W. The Initial Velocities of Fragments from Bombs, Shell, Grenades.[R]: Aberdeen Proving Ground (MD, USA): Ballistic Research Laboratories, 1943.
[12] Gao, Y. G., Feng, S. S., Zhang, B., Zhou, T. Effect of the length-diameter ratio on the initial fragment velocity of cylindrical casing[J]. IOP Conference Series: Materials Science and Engineering, 2019, 629(1): 012-020.
[13] 牟仁德, 贺世美. 内爆炸圆管破片初速研究[J]. 航空材料学报, 2006, 26(3): 140-143.
MOU Ren-de, HE Shi-mei. Research of initial velocity of in-explosive cylinder fragments [J]. Journal of Aeronautical Meterials, 2006, 26(3): 140-143.
[14] 蒋浩征. 杀伤战斗部破片飞散初速 v0的计算[J]. 兵工学报, 1980, (1): 68-79.
JIANG Hao-zhen. Calculation of the initial velocity v0 of fragmentation of anti-personnel combat parts[J]. Acta Armamentarii, 1980, (1): 68-79.
[15] An, Xuanyi, Liu, Jiayun, Ye, Ping, Tian, Chao, Feng, Shunshan, Dong, Yongxiang. Axial distribution characteristics of fragments of the warhead with a hollow core[J]. International Journal of Impact Engineering, 2018, 122: 10-22.
[16] 雷灏, 姚志敏, 尉广军. 基于Gurney公式的半预制破片飞散特性研究[J]. 爆破, 2014, 31(1): 38-42.
LEI Hao, YAO Zhi-min, YU Guang-jun. Research on dispersion characteristics of pre-formed fragments based on gurney formula [J]. Blasting, 2014, 31(1): 38-42.
[17] 崔金雷, 侯俊亮, 肖辉朗,等. 一种预制破片初速修正计算方法[J]. 中国测试, 2021, 47(10): 19-26.
CUI Jin-lei, HOU Jun-liang, XIAO Hui-lang. An amended method of calculating initial velocity of prefabricated fragments [J]. China Measurement & Test, 2021, 47(10): 19-26.
[18] Bola, M. S., Madan, A. K., Singh, M., Vasudeva, S. K. Expansion of Metallic Cylinders under Explosive Loading[J]. Defence Science Journal, 1992, 42(3).
[19] 杨科之, 刘盛. 空气冲击波传播和衰减研究进展[J]. 防护工程, 2020, 42(03): 1-10.
YANG Ke-zhi, LIU Sheng. Progress of research on propagation and attenuation of air blast [J]. Protective Engineering, 2020, 42(03): 1-10.
[20] 刘沫言. 带壳装药的破片撞击和冲击波感度研究[D]:沈阳理工大学, 2020.
LIU Mo-yan. Study on fragment impingement and shock wave sensitivity with shell charge [D]. Shenyang Li University, 2020.
[21] 黄正祥, 祖旭东. 终点效应[M]. 北京: 科学出版社, 2014.
Huang Zheng-xiang, Zu Xu-dong. Terminal effects [M]. Beijing: Science Press, 2014.
[22] 赵耘晨. 前向增强杀爆弹前置破片初速及飞散方向研究[D]:南京理工大学, 2017.
ZHAO Yun-chen. The study fragment initial velocity and scattering of front fragment on forward enhanced lethal HE projectile [D]. Nanjing University of Science & Technology, 2017.
[23] 崔浩, 武军安, 周昊, 杨永亮, 邢柏阳, 陈雄, 郭锐. 探针式圆筒试验方法及TNT炸药爆轰产物JWL状态方程参数标定[J]. 含能材料, 2023, 31(07): 707-713.
CUI Hao, WU Jun⁃an1, ZHOU Hao, et al. Probe cylinder test method and calibration of jwl equation of state of detonation products for tnt explosive [J]. Chinese Journal of Energetic Materials, 2023, 31(07): 707-713.
[24] 李松林. TATP的爆炸场参数与JWL状态方程研究[D]:安徽理工大学, 2022.
LI Song-lin. Study on explosion field and JWL EOS of TATP [D]. AnHui University of Science and Technology, 2022
[25] 王新颖, 王树山, 徐豫新, 胡赛. RDX基PBX的做功能力及JWL状态方程参数确定[J]. 爆炸与冲击, 2016, 36(02): 242-247.
WANG Xin-ying, WANG Shu-shan, XU Yu-xin, et al. Power capability and parameters of JWL equation of state for RDX-based PBX [J]. Explosion and Shock Waves, 2016, 36(02): 242-247.
[26] 卢芳云, 李翔宇, 田占东, 等. 武器毁伤与评估[M]. 北京: 科学出版社, 2021.
LU Fang-yun, LI Xian-gyu, TIAN Zhan-dong, et al. Weapons damage and assessment [M]. Beijing: Science Press, 2021.
[27] Mott, N. F. Fragmentation of shell cases[J]. Proc R Soc Lond A Math Phys Sci, 1947, 189(1018): 300-308.
[28] Engineers, U.S Army Corps of. Unified facilities criteria (UFC) – structures to resist the effects of accidental explosions (UFC 3–340-02)[R], 2008.
[29] Zecevic, B., Terzic, J., Catovic, A., al, et. Characterization of distribution parameters of fragment mass and number for conventional projectiles; proceedings of the New Trends in Research of Energetic Materials, F, 2011 [C].
[30] Grisaro, H. Y., Dancygier, A. N. Dynamic Response of RC Elements Subjected to Combined Loading of Blast and Fragments[J]. Journal of Structural Engineering, 2020, 147(2).
[31] 谭多望, 温殿英, 张忠斌, 于川, 谢盘满. 球形破片长距离飞行速度衰减规律, F, 2001 [C].
TAN Duowang, WEN Dianying, ZHANG Zhongbin, et al. Long- distance flight performances of spherical fragments [J]. Chinese Journal of High Pressure Physics, 2002,16(4):271-275.
[32] Chock, J. M. K. Review of Methods for Calculating Pressure Profiles of Explosive Air Blast and its Sample Application[D]:Virginia Polytechnic Institute and State University, Blacksburg, Virginia, 1999.
[33] 吴俊浩, 郭子如, 杜宝强, 等. 炸药爆炸产物组成的确定及其对爆热的影响[J]. 工程爆破, 2022, 28(3): 91-96.
WU Jun-hao, GUO Zi-ru, DU Bao-qiang, et al. Determination of detonation product composition and its influence on the detonation heat [J]. Engineering Blasting, 2022, 28(3): 91-96.
[34] 张起源. 液氢爆轰和爆炸威力分析[J]. 国外导弹与宇航, 1982, (09): 28-32.
ZHANG Qi-yuan. Analysis of liquid hydrogen blast and explosive power[J]. Foreign Missiles and Aerospace, 1982, (09): 28-32.
[35] Ullah, Aleem, Ahmad, Furqan, Jang, Heung-Woon, al, et. Review of analytical and empirical estimations for incident blast pressure[J]. KSCE Journal of Civil Engineering, 2016, 21(6): 2211-2225.
[36] Henrych, J., Major, R. The dynamics of explosion and its use[M]. Elsevier, Amsterdam, 1979.
[37] Sadovskiy, M. A. Mechanical effects of air shock waves fromexplosions according to experiments[R]: Selected works: Geophysics and physics of explosion, Nauka Press, Moscow., 2004.
[38] Chock, Jmk. Review of Methods for Calculating Pressure Profiles of Explosive Air Blast and its Sample Application[J]. virginia tech, 1999.
[39] 奥尔连科, 等. 爆炸物理学[M]. 孙乘纬, 译. 北京: 科学出版社, 2011.
Orlenko, et al. Explosive physics [M]. Sun Cheng-wei, Translation. Beijing: Science Press, 2011.
[40] Song, Pu, Yang, Kai, Liang, AnDing, al, et. Analysis of the JWL equation of state and its energy release difference of domestic and foreign TNT explosives.[J]. Journal of Explosives and Propellants, 2013, 36(2): 4.
[41] 陈清畴, 蒋小华, 李敏, 等. RDX基高聚物黏结炸药JWL状态方程[J]. 含能材料, 2011, 19(2): 4.
CHEN Qing-chou, JIANG X iao-hua, LI Ming, et al. JWL equation of state for RDX-based PBX [J]. Chinese Journal of Energetic Materials, 2011, 19(2): 4.