弹性背腔膜式消声器由弹性背腔以及弹性内膜组成,通过声场与弹性内膜及弹性外膜的耦合作用,降低消声器下游的透射声能,在低频具有较好的宽带消声效果。为求解任意边界条件下的弹性背腔膜式消声器的传递损失,本文基于能量原理,建立了弹性背腔膜式消声器的声振耦合模型。采用边界弹簧约束来实现弹性膜的任意边界条件,进而分析边界约束对传递损失特性的影响。结果表明,理论计算结果与有限元结果吻合良好;结构边界约束对系统声学特性影响显著,增强外膜边界约束,能获得低频宽带消声效果;减弱内膜边界约束,能使最低消声频率向低频移动。
Abstract
The flexible back cavity membrane silencer is composed of a flexible back cavity and a flexible inner membrane. Through the coupling of the sound field with the flexible inner and outer membrane, the transmitted sound energy of the downstream is reduced, and the muffler has a good broadband sound attenuation effect at low frequency. In order to solve the transmission loss of the flexible back cavity membrane silencer under arbitrary boundary conditions, the coupling model of the silencer was established based on the energy principle. The boundary spring constraint was used to realize the arbitrary boundary conditions of the flexible membrane, and then the influence of boundary constraint on the transmission loss characteristics was analyzed. The results show that the theoretical calculation results agree well with the finite element method. The boundary constraints have a significant effect on the acoustic characteristics of the system, and the low frequency broadband noise reduction effect can be obtained by enhancing the outer membrane boundary constraints. By weakening the boundary constraints of the inner membrane, the lowest muffling frequency can be moved to lower frequency.
关键词
弹性背腔膜式消声 /
传递损失 /
能量原理 /
边界条件
{{custom_keyword}} /
Key words
flexible back cavity membrane silencer /
transmission loss /
energy principle /
boundary conditions
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 戴俊,苏胜利. 舰船通海管路低频消声技术的研究进展[J].舰船科学技术,2016,38(09):7-11.
DAI Jun, SU Sheng-li. Research progress of low frequency noise attenuation techniques for sea-connected pipes in naval vessel [J]. Ship Science and Technology, 2016,38(09)7-11.
[2] 侯九霄,朱海潮,袁苏伟,等. 水介质管路弹性背腔微穿孔消声器的传递损失特性[J]. 声学学报, 2021, 46(3):405-414.
HOU Jiu-xiao, ZHU Hai-chao, YUAN Su-wei, et al. Transmission loss of flexible micro-perforated muffler with flexible back cavity for water filled pipelines[J]. Chinese Journal of Acoustics, 2021, 46(3): 405-414.
[3] 潘国培,杨碧君,贺华,等. 不同内插管扩张式消声器声学性能分析[J]. 噪声与振动控制,2013,33(06):177-179+187.
PAN Guo-pei, YANG Bi-jun, HE Hua, et al. Acoustic performance analysis of expansion chamber mufflers with different intubation tubes[J]. Noise and Vibration Control,2013,33(06):177-179+187.
[4] Huang L X. A theoretical study of duct noise control by flexible panels[J]. Journal of the Acoustical Society of America, 1999, 106(4):1801-1809.
[5] Huang L X. A theory of reactive control of low-frequency duct noise[J]. Journal of Sound & Vibration, 2000,238(4):575-594.
[6] Choi Y S, Kim H. Sound-wave propagation in a membrane-duct[J]. Journal of the Acoustical Society of America, 2002, 112(5): 1749-1752
[7] Choy Y S. Experimental study of absorption and reflection of grazing sound by flexible panels. Proceedings of the 8th International Congress on Sound Vibration, Hong Kong, China, 2001, 1003-1010.
[8] Huang L X. Modal analysis of a drumlike silencer[J]. Journal of the Acoustical Society of America, 2002, 112: 2014-2025.
[9] Chiu Y H, Cheng L, Huang L X. Drum-like silencers using magnetic forces in a pressurized cavity[J]. Journal of Sound and Vibration, 2006, 297(3): 895-915.
[10] Lawrie J B, Guled IMM. On tuning a reactive silencer by varying the position of an internal membrane[J]. Journal of the Acoustical Society of America, 2006, 120(2): 780-790.
[11] Choy Y S, Huang L X. Multiple drum-like silence for low frequency duct noise reflection[J]. Applied Acoustics, 2009, 70: 1422-1430.
[12] Huang L X. Attenuation of low frequency duct noise by a flute-like silencer[J]. Journal of Sound and Vibration, 2009, 326: 161-176.
[13] 赵晓臣,柳贡民,张文平. 鼓型消声器的声学性能计算与分析[J]. 振动与冲击, 2015, 34(17):152-160.
ZHAO Xiao-chen, LIU Gong-min ZHANG Wen-ping. Acoustic attenuation performance analysis of the drum-like silencer[J]. Journal of Vibration and Shock, 2015, 34(17): 152-160.
[14] Liu Y, Choy Y S, Huang L X, et al. Noise suppression of a dipole source by tensioned membrane with side-branch cavities[J]. Journal of the Acoustical Society of America, 2012, 132(3): 1392-1402.
[15] 侯九霄,朱海潮,毛荣富,等. 柔性背腔鼓型消声器声学特性分析[J].国防科技大学学报,2019,41(06):75-82.
HOU Jiu-xiao, ZHU Hai-chao, MAO Rong-fu, et al. Acoustic characteristic of drum-like silencer with flexible back cavity[J]. Journal of National University of Defense Technology, 2019, 41(06): 75-82
[16] Du J, Liu Y, Wang Y, et al. Vibro-acoustic analysis of an elastically restrained plate duct silencer backed by irregular acoustical cavity[J]. Applied Acoustics, 2018, 138(SEP.):60-71.
[17] Du J, Liu Y, Zhang Y. Influence of boundary restraint on sound attenuation performance of a duct-membrane silencer[J]. Applied Acoustics, 2016, 105(Apr.):156-163.
[18] 刘杨. 管道结构声振耦合机理与声压波动抑制研究[D].哈尔滨:哈尔滨工程大学,2020.
LIU Yang. Study on duct structure-acoustic coupling mechanism and its sound wave attenuation[D]. Harbin: Harbin Engineering University,2020.
[19] Liu Y, Du J. Coupling effects of boundary restraining stiffness and tension force on sound attenuation of a cavity-backed membrane duct silencer[J]. Applied Acoustics, 2017, 117(PT.A):150-159.
[20] 许强,刘伊凡,陈跃华,等.非对称阻抗插入管消声器的Chebyshev-变分法建模与求解[J].声学学报,2021,46(04):594-604.
XU Qiang, Liu Yi-fan, CHEN Yue-hua.et al. Modeling and solving of inserted-pipe muffler with unsymmetrical wall impedance based on Chebyshev-variational method[J]. Acta acoustica. 2021,46(04):594-604.
[21] Huang L X, Choy Y S. Vibro-acoustics of three-dimensional drum silencer[J]. Journal of the Acoustical Society of
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}