纤维增强复合材料(Fiber reinforced polymer, FRP)具有较高的比强度、优异的耐腐蚀性、灵活的可设计性等优点。为解决桥梁防船撞难题,提出一种缠绕成型的FRP管桩抵御船舶撞击。分别改变管桩的壁厚、缠绕角度和冲击能量,开展弯曲冲击试验,对比分析各试件的破坏模式、动力时程响应及撞击过程中能量耗散情况。结果表明,纤维缠绕角度会改变试件的破坏模式,±75°缠绕角度的试件发生了剪切破坏,而±45°缠绕角度的试件仅在冲击区域发生局部破坏,且能恢复变形;增大壁厚能有效减小试件变形,但撞击力峰值会随之增大。采用ANSYS/LS-DYNA建立了冲击试验模型并进行有限元分析,数值模拟结果与试验值吻合较好。
Abstract
Fiber reinforced composite polymers (FRP) have the characteristics of higher specific strength, excellent corrosion resistance, flexible designability, etc. A tube made by using winding formed glass FRP is proposed for solving the collision problem. The bending impact test was carried out by changing the wall thickness, winding angle and impact energy of pipes respectively, the three models are analyzed and compared from aspects of failure mode, dynamic time history response and energy dissipation condition during a collision event. It is found that compared with the shear failure of the specimens with ±75° winding angle, the specimens with ±45° winding angle only had local damage to impact surface. As the wall thickness increases, the deformation of the specimen becomes smaller, but the peak value of the first impact force increases. Impact experiment of the specimen is simulated by ANSYS/LS-DYNA, the results are in good agreement with the test values.
关键词
冲击试验 /
复合材料 /
破坏模式 /
吸能特性 /
数值模拟
{{custom_keyword}} /
Key words
impact test /
composite structure /
failure modes /
performance of energy absorption /
numerical simulation
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Pedersen P T, Chen J, Zhu L. Design of bridges against ship collisions[J]. Marine Structures, 2020, 74: 102810.
[2] 郑植, 耿波, 袁佩, 等. 桥墩FRP复合材料防撞套箱蝴蝶型连接结构可靠性研究[J]. 振动与冲击, 2020, 39(1): 281-288.
ZHENG Zhi, GENG Bo, YUAN Pei, et al. Reliability of butterfly type connection structure of bridge pier FRP composite anti-collision sleeve box[J]. Journal of Vibration and Shock, 2020, 39(1): 281-288.
[3] Zhang QL, Fang H, Zhu L, et al. Impact behavior of corrugated-core infilling foam sandwich composite structure[J]. Case Studies in Construction Materials, 2022, 17: e01418.
[4] 欧智菁, 颜建煌, 俞杰, 等. 装配式圆钢管约束混凝土桥墩抗震性能研究[J]. 振动与冲击, 2022, 41(18): 47-54.
OU Zhijing, YAN Jianhuang, YU Jie, et al. Seismic performances of fabricated circular steel tube confined concrete piers[J]. Journal of Vibration and Shock, 2022, 41(18): 47-54.
[5] Wang J J, Song Y C, Wang W, et al. Calibrations of numerical models by experimental impact tests using scaled steel boxes[J]. Engineering Structures, 2018, 173: 481-494.
[6] 宋彦臣, 王君杰, 尹海蛟, 等. 轮船-桥墩碰撞简化荷载模型[J]. 振动与冲击, 2019, 38(5): 60-70.
SONG Yanchen, WANG Junjie, YIN Haijiao, et al. Simplified impact load model for ship-bridge collisions[J]. Journal of Vibration and Shock, 2019, 38(5): 60-70.
[7] Xie H, Shen C, Fang H, et al. Flexural property evaluation of web reinforced GFRP-PET foam sandwich panel: Experimental study and numerical simulation[J]. Composites Part B: Engineering, 2022, 234: 109725.
[8] 柏佳文, 魏洋, 张依睿, 等. 新型碳纤维增强复合材料-钢复合管海水海砂混凝土圆柱轴压试验[J]. 复合材料学报, 2021, 38(9): 3076-3085.
BAI Jiawen, WEI Yang, ZHANG Yirui, et al. Axial compression behavior of new seawater and sea sand concrete filled circular carbon fiber reinforced polymer-steel composite tube columns[J]. Acta Materiae Compositae Sinica, 2021, 38(9): 3076-3085.
[9] Ye Y Y, Liang S D, Feng P, et al. Recyclable LRS FRP composites for engineering structures: Current status and future opportunities[J]. Composites Part B: Engineering, 2021, 212: 108689.
[10] Zeng J J, Chen S P, Zhuge Y, et al. Three-dimensional finite element modeling and theoretical analysis of concrete confined with FRP rings[J]. Engineering Structures, 2021, 234: 111966.
[11] Gao H, Wang L, Chen B, et al. Experimental investigation on flexural performance of splicing glass fiber-reinforced polymer (GFRP)-Concrete-steel sandwich composite members[J]. Advances in Structural Engineering, 2022, 25(15): 3155-3170.
[12] Shokrieh M M, Tozandehjani H, Omidi M J. Effect of fiber orientation and cross section of composite tubes on their energy absorption ability in axial dynamic loading[J]. Mechanics of Composite Materials, 2009, 45: 567-576.
[13] 王熙, 卢国兴, 余同希. 复合材料管状结构的能量吸收性能[J]. 工程力学, 2003, 20(3): 155-160.
WANG Xi,LU Guoxing,YU Tongxi. Energy absorpotion behavior of composite tube structures[J]. Engineering Mechanics, 2003, 20(3): 155-160.
[14] Song A, Xu H, Luo Q, et al. Finite Element Analysis on Inelastic Mechanical Behavior of Composite Beams Strengthened With Carbon-Fiber-Reinforced Polymer Laminates Under Negative Moment[J]. Advanced Concretes and Their Structural Applications, 2022.
[15] 罗敏, 杨嘉陵, 胡大勇. 纤维铺设角度和加载速率对复合材料圆管吸能特性的影响[J]. 兵工学报, 2009(2): 237-241.
LUO M, YANG Jialing, HU Dayong. Effect of Fibre Orientation and Loading Rate on Energy Absorption Capability of Composite Tubes[J]. Acta Armamentarii, 2009(2): 237-241.
[16] Huang Z M. Ultimate strength of a composite cylinder subjected to three-point bending: correlation of beam theory with experiment[J]. Composite structures, 2004, 63(3-4): 439-445.
[17] 王敏, 文鹤鸣. 碳纳米管/碳纤维增强复合材料层合板低速冲击响应和破坏的数值模拟[J]. 爆炸与冲击, 2022, 42(3): 25-36.
WANG Min, WEN Heming. Numerical simulations of response and failure of carbon nanotube/carbon fibre reinforced plastic laminates under impact loading [J]. Explosion and Shock Waves, 2022, 42(3): 25-36.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}