基于模态重分析的GFEM模型突风响应计算

肖宇1,刘景光1,邬旭辉1,常亮2

振动与冲击 ›› 2024, Vol. 43 ›› Issue (13) : 333-340.

PDF(2000 KB)
PDF(2000 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (13) : 333-340.
论文

基于模态重分析的GFEM模型突风响应计算

  • 肖宇1,刘景光1,邬旭辉1,常亮2
作者信息 +

Calculation of gust response of GFEM model based on modal reanalysis

  • XIAO Yu1, LIU Jingguang1, WU Xuhui1, CHANG Liang2
Author information +
文章历史 +

摘要

基于模态重分析技术,提出一种适合全局有限元模型(GFEM)的突风动响应高效计算方法。针对模型局部结构重量或刚度的细微变化,进行增量建模,充分利用现有构型结果,避免了传统分析中重复计算的步骤。对于质量阵的变化,以已有构型模态向量为初始向量,通过迭代分析进行特征值求解,针对刚度阵的微小变化,特别引入Sherman-Morrison-Woodbury公式,实现刚度逆矩阵的增量分析,从而克服了大规模GFEM模型的特征值求解效率低的问题,最终建立了一套适合于工程应用的GFEM突风高效动响应分析方法。采用GTA模型进行了突风分析算法的验证,在此基础上,基于某模型机翼,对模态重分析算法在突风动响应分析中的应用进行了研究。结果表明,通过LU分解可避免保存稠密形式的刚度逆矩阵,通过合理的松弛因子和收敛阈值,可有效提升计算效率。

Abstract

Based on the modal reanalysis technology, an efficient calculation method for gust dynamic response suitable for Global Finite Element Models (GFEM) was proposed. Incremental modeling was carried out to address local minor changes in the mass or stiffness of the model structure, fully utilizing existing configuration results and avoiding the repetitive calculation steps in the traditional analysis. For the changes of the mass matrix, the existing configuration modal vectors were taken as the initialization vectors, and the eigenvalues were solved iteratively. For the minor changes of the stiffness matrix, the Sherman-Morrison-Woodbury formula was introduced to implement the incremental analysis of the stiffness inverse matrix, and the problem of low efficiency in eigenvalue solution of large-scale GFEM models can be avoided, and finally a set of efficient GFEM gust dynamic response methods suitable for engineering applications was established. The gust analysis algorithm was validated with the GTA model, then, the application of the modal reanalysis algorithm on the gust response analysis was studied based on a certain model wing. The results show that saving the dense form of the stiffness inverse matrix can be avoided by the LU decomposition, and the calculation efficiency can be effectively improved by adopting a reasonable relaxation factor and convergence threshold.

关键词

模态重分析 / 全局有限元模型 / 突风 / 动响应 / Sherman-Morrison-Woodbury公式

Key words

modal reanalysis / global finite element model / gust / dynamic response / Sherman-Morrison-Woodbury formula

引用本文

导出引用
肖宇1,刘景光1,邬旭辉1,常亮2. 基于模态重分析的GFEM模型突风响应计算[J]. 振动与冲击, 2024, 43(13): 333-340
XIAO Yu1, LIU Jingguang1, WU Xuhui1, CHANG Liang2. Calculation of gust response of GFEM model based on modal reanalysis[J]. Journal of Vibration and Shock, 2024, 43(13): 333-340

参考文献

[1] Hoblit F M. Gust loads on aircraft: concepts and applications[M]. Aiaa, 1988. [2] FULLER J R. Evolution of airplane gust loads design requirements[J]. Journal of aircraft, 1995, 32(2): 235-246. [3] 匡爱民. 民用飞机重量控制方法研究[J]. 民用飞机设计与研究, 2012 (B11): 16-20. Kuang Aimin. Weight Control Method Research of Civil Aircraft[J]. Civil Aircarft Design & Research, 2012 (B11): 16-20. [4] 杨晓东, 葛路遥, 李凯. 民机机身框自然网格模型建模分析方法研究[J]. 机械设计与制造工程, 2020, 49(11):68-72. Yang Xiaodong, Ge Luyao, Li Kai. Research on Natural grid finite element Modeling and Analysis Method for Fuselage Frame of Civil Aircraft[J]. Mechanical Design and Manufacturing Engineering, 2020, 49(11):68-72. [5] Cooper J, Khodaparast H, Ricci S, et al. Rapid prediction of worst case gust loads[C]//52nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference 19th AIAA/ASME/AHS Adaptive Structures Conference 13t. 2012: 2040. [6] Haddad Khodaparast H, Georgiou G, Cooper J, et al. Efficient worst case” 1-cosine” gust loads prediction[J]. Journal of Aeroelasticity and Structural Dynamics, 2012, 2(3). [7] 肖宇. 基于自适应随机优化的连续阵风关键载荷预测[J]. 航空学报, 2019, 40(2): 522383-522383. XIAO Yu. Prediction of critical continuous gust load based on adaptive stochastic optimization[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2019, 40(2): 522383-522383. [8] 杨志军, 陈塑寰, 吴晓明. 结构静态拓扑重分析的迭代组合近似方法[ J]. 力学学报, 2004, 36 ( 5): 611-616. Yang Zhijun, Chen Suhuan, Wu XiaoMing. An iterative combined approximation approach for structural static reanalysis of topological [ J]. ,Chinese Journal of Theoretical and Applied Mechanics, 2004, 36 ( 5): 611-616. [9] 刘丹,王琥,李恩颖,等.基于Lanczos算法的模态重分析法及其在车身结构设计中的应用[J]. 计算力学学报, 2015, 32(2): 167-173. LIU Dan, WANG Hu, LI En-ying, etal. A Lanczos-based modal reanalysis method and its application for car body structural design[J]. Chinese Journal of Computational Mechanics, 2015, 32(2): 167-173. [10] 何建军, 陈享姿. 基于伪随机特征向量的二次修改的结构拓扑重分析[J]. 振动与冲击, 2016, 35(8): 207-210. He Jian-jun, Chen Xiang-zi. Structural topology reanalysis for twice continuous modifications based on pseudo-random eigenvector. Journal of Vibration and Shock, 2016, 35(8): 207-210. [11] Khodaparast H H, Cooper J E. Rapid prediction of worst-case gust loads following structural modification[J]. AIAA journal, 2014, 52(2): 242-254. [12] Rodden W P, Johnson E H. MSC/NASTRAN aeroelastic analysis: user's guide; Version 68[M]. MacNeal-Schwendler Corporation, 1994. [13] Akgün M A, Garcelon J H, Haftka R T. Fast exact linear and non-linear structural reanalysis and the Sherman–Morrison–Woodbury formulas[J]. International Journal for Numerical Methods in Engineering, 2001, 50(7): 1587-1606. [14] Karpel M, Moulin B, Chen P C. Dynamic response of aeroservoelastic systems to gust excitation[J]. Journal of Aircraft, 2005, 42(5): 1264-1272. [15] Vassberg J, Dehaan M, Rivers M, et al. Development of a common research model for applied CFD validation studies[C]//26th AIAA applied aerodynamics conference. 2008: 6919.

PDF(2000 KB)

198

Accesses

0

Citation

Detail

段落导航
相关文章

/