集成全息希尔伯特谱分析及其在滚动轴承故障诊断中的应用

彭国良1,郑近德1,潘海洋1,童靳于1,刘庆运1

振动与冲击 ›› 2024, Vol. 43 ›› Issue (13) : 98-105.

PDF(3304 KB)
PDF(3304 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (13) : 98-105.
论文

集成全息希尔伯特谱分析及其在滚动轴承故障诊断中的应用

  • 彭国良1,郑近德1,潘海洋1,童靳于1,刘庆运1
作者信息 +

Ensemble holo-Hilbert spectral analysis and its application in fault diagnosis of rolling bearing

  • PENG Guoliang1, ZHENG Jinde1, PAN Haiyang1, TONG Jinyu1, LIU Qingyun1
Author information +
文章历史 +

摘要

全息希尔伯特谱分析(Holo-Hilbert spectral analysis,HHSA)是一种新的信号解调分析处理技术,其采用双层经验模态分解(EMD),能够有效揭示非线性或非平稳振动信号中的跨尺度耦合关系。但是,EMD在信号分解过程中存在严重的模态混叠问题,导致瞬时频率估计不准确,影响了HHSA的分析精度。基于此,论文提出了集成全息希尔伯特谱分析(Ensemble Holo-Hilbert spectral analysis,EHHSA)方法。同时为了更精确解调故障特征信息,通过对载波变量进行积分,定义了一种可以揭示调制特征的调幅边际谱分析方法。最后,通过对滚动轴承仿真和实测数据进行分析,结果表明:与传统谱分析方法相比,所提EHHSA方法及调幅边际谱的特征提取性能和噪声鲁棒性更强。

Abstract

Holo-Hilbert spectral analysis (HHSA) is a new signal processing technique that utilizes double-layer empirical mode decomposition (EMD) to reflect the cross scale coupling relationships in nonlinear and non-stationary vibration signals. However, there is a serious mode mixing problem in the signal decomposition process of EMD, which leads to inaccurate Instantaneous phase and frequency estimation and affects the analysis accuracy of HHSA. Based on this, an ensemble Holo-Hilbert spectral analysis (EHHSA) method is proposed. In the analysis process based on EHHSA, an amplitude modulation marginal spectrum analysis method that can reveal modulation characteristics was defined by integrating carrier variables. Finally, the analysis of simulation and measured data on rolling bearings shows that the proposed EHHSA method and amplitude modulation marginal spectrum have stronger feature extraction performance and noise robustness compared to traditional spectral analysis methods.

关键词

集成全息希尔伯特谱分析 / 时频分析 / 集成经验模态分解 / 故障诊断

Key words

Ensemble Holo-Hilbert spectrum analysis / Time-frequency analysis / Ensemble empirical mode decomposition / Fault diagnosis

引用本文

导出引用
彭国良1,郑近德1,潘海洋1,童靳于1,刘庆运1. 集成全息希尔伯特谱分析及其在滚动轴承故障诊断中的应用[J]. 振动与冲击, 2024, 43(13): 98-105
PENG Guoliang1, ZHENG Jinde1, PAN Haiyang1, TONG Jinyu1, LIU Qingyun1. Ensemble holo-Hilbert spectral analysis and its application in fault diagnosis of rolling bearing[J]. Journal of Vibration and Shock, 2024, 43(13): 98-105

参考文献

[1] ZHENG J, DONG Z, PAN H, et al. Composite multi-scale weighted permutation entropy and extreme learning machine based intelligent fault diagnosis for rolling bearing[J]. Measurement,2019,143: 69–80. [2] FENG K, JI J C, ZHANG Y, et al. Digital twin-driven intelligent assessment of gear surface degradation[J]. Mechanical Systems and Signal Processing, 2023, 186: 109896. [3] FENG K, JI J C, NI Q, et al. A review of vibration-based gear wear monitoring and prediction techniques[J]. Mechanical Systems and Signal Processing, 2023, 182: 109605. [4] WANG X, ZHENG J, NI Q, et al. Traversal index enhanced-gram (TIEgram): a novel optimal demodulation frequency band selection method for rolling bearing fault diagnosis under non-stationary operating conditions[J]. Mechanical Systems and Signal Processing, 2022, 172: 109017. [5] WANG L, LIU Z. An improved local characteristic-scale decomposition to restrict end effects, mode mixing and its application to extract incipient bearing fault signal[J]. Mechanical Systems and Signal Processing, 2021, 156: 107657. [6] MIAO Y, ZHAO M, LIN J, et al. Application of an improved maximum correlated kurtosis deconvolution method for fault diagnosis of rolling element bearings[J]. Mechanical Systems and Signal Processing, 2017, 92: 173-195. [7] NI Q, JI J C, FENG K, et al. A fault information-guided variational mode decomposition (FIVMD) method for rolling element bearings diagnosis[J]. Mechanical Systems and Signal Processing, 2022, 164: 108216. [8] PAN H, ZHENG J, YANG Y, et al. Nonlinear sparse mode decomposition and its application in planetary gearbox fault diagnosis[J]. Mechanism and Machine Theory, 2021, 155: 104082. [9] PENG Z K, PETER W T, CHU F L. A comparison study of improved Hilbert–Huang transform and wavelet transform: application to fault diagnosis for rolling bearing[J]. Mechanical Systems and Signal Processing, 2005, 19(5): 974-988. [10] FENG Z, LIANG M, CHU F. Recent advances in time–frequency analysis methods for machinery fault diagnosis: a review with application examples[J]. Mechanical Systems and Signal Processing, 2013, 38(1): 165-205. [11] HUANG N E, WU Z. A review on Hilbert‐Huang transform: method and its applications to geophysical studies[J]. Reviews of Geophysics, 2008, 46(2):RG2006(1-23). [12] DAUBECHIES I. The wavelet transform, time-frequency localization and signal analysis[J]. IEEE Transactions on Information Theory, 1990, 36(5): 961-1005. [13] HUANG N E, HU K, YANG A C C, et al. On Holo-Hilbert spectral analysis: a full informational spectral representation for nonlinear and non-stationary data[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2016, 374(2065): 20150206. [14] BRACEWELL R N. The Fourier transform and its applications[M]. New York: McGraw-Hill, 1986. [15] BUSCH P, HEINONEN T, LAHTI P. Heisenberg's uncertainty principle[J]. Physics reports, 2007, 452(6): 155-176. [16] ANTONI J. Cyclostationarity by examples[J]. Mechanical Systems and Signal Processing, 2009, 23(4): 987-1036. [17] ANTONI J. Cyclic spectral analysis in practice[J]. Mechanical Systems and Signal Processing, 2007, 21(2): 597-630. [18] ANTONI J, HANSON D. Detection of surface ships from interception of cyclostationary signature with the cyclic modulation coherence[J]. IEEE Journal of Oceanic Engineering, 2012, 37(3): 478-493. [19] WU Z, HUANG N E. Ensemble empirical mode decomposition: a noise-assisted data analysis method[J]. Advances in Adaptive Data Analysis, 2009, 1(1): 1-41. [20] CHEN B, CHENG Y, ZHANG W, et al. Enhanced bearing fault diagnosis using integral envelope spectrum from spectral coherence normalized with feature energy[J]. Measurement, 2022, 189: 110448. [21] MIAO Y, ZHAO M, LIN J. Improvement of kurtosis-guided-grams via Gini index for bearing fault feature identification[J]. Measurement Science and Technology, 2017, 28(12): 125001. [22] NI Q, JI J C, FENG K, et al. A novel correntropy-based band selection method for the fault diagnosis of bearings under fault-irrelevant impulsive and cyclostationary interferences[J]. Mechanical Systems and Signal Processing, 2021, 153: 107498.

PDF(3304 KB)

315

Accesses

0

Citation

Detail

段落导航
相关文章

/