端部绕组振动是导致绝缘磨损和退化的关键因素之一。本文研究了同步发电机在转子匝间短路下的端部绕组振动特性。不同于以往的研究,本文不仅考虑了转子匝间短路程度,还研究了转子匝间短路位置和气隙偏心程度对端部绕组振动的影响。首先理论推导得出定子端部绕组的受力表达式;然后基于电磁-结构耦合模型得到了绕组电磁力及其力学响应特性,如变形、应变和应力;最后在CS-5故障模拟发电机进行实验验证。实验结果与理论分析、有限元计算结果基本一致。结果表明,转子匝间短路会给绕组电磁力带来额外的50Hz(基本频率)、150Hz和200Hz的谐波。随着气隙偏心程度/转子匝间短路程度/短路位置与大齿之间距离增大,端部绕组电磁力/振动加剧。此外,复合故障对端部绕组振动影响更为严重。在定子绕组电磁力作用下,定子绕组鼻端部位为最大变形位置,同时绕组直线段与端部的连接处易发生绝缘磨损,在制造及后期维护中应重点关注。
Abstract
End winding vibration is one of the key factors that lead to the insulation wearing and degrading. This paper presents a comprehensive study on the end winding vibration properties in synchronous generators under rotor interturn short circuit cases. Different from other studies, this work investigates not only the influence of rotor interturn short circuit degrees, but also the rotor interturn short circuit positions and the air-gap eccentricity on the end winding vibrations. Firstly, the expression of the end winding electromagnetic force is obtained through theoretical derivation. Then, the winding electromagnetic forces and response characteristics, such as deformation, strain and stress, are based on a coupled electromagnetic-structural model. Finally, experimental verification at the CS-5 fault simulator generator. The experimental results are basically consistent with the theoretical analyses and finite element calculations. It is shown that the rotor interturn short circuit will bring in extra 50Hz (fundamental frequency), 150Hz and 200Hz harmonics to the electromagnetic force. Moreover, with the increment of either the air-gap eccentricity/rotor interturn short circuit degree or the distance between the short circuit position and the big tooth, the end winding electromagnetic force/vibrations will be increased. In addition, compound faults have a more severe effect on the end winding vibration. Due to the electromagnetic force of the stator winding, the nose part is the location of maximum deformation, while the joint to connect the end part and the linear sections is prone to insulation wear, which should be a key concern in the manufacture and later maintenance.
关键词
同步发电机 /
转子匝间短路 /
气隙偏心 /
电磁力 /
绕组振动
{{custom_keyword}} /
Key words
synchronous generators /
rotor interturn short circuit /
air-gap eccentricity /
electromagnetic force /
winding vibration
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 何玉灵,张文,张钰阳等.发电机定子匝间短路对绕组电磁力的影响[J].电工技术学报, 2020, 35(13): 2879-2888.
HE Yuling, ZHANG Wen, ZHANG Yuyang, et al. Effect of Stator Inter-Turn Short Circuit on Winding Electromagnetic Forces in Generators[J]. Transactions of China Electrotechnical Society, 2020, 35(13): 2879- 2888.
[2] LI R, LI H. Ground wall insulation damage localization of large generator stator bar using an active Lamb waves method [J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2017, 24(3):1860- 1869.
[3] STONE G C. Condition monitoring and diagnostics of motor and stator windings–A review [J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2013,20(6): 2073-2080.
[4] ZENG Chong, HUANG Song, YANG Yongming, et al. Influence of End Structure on Electromagnetic Forces on End Winding of a 1550 MW Nuclear Generator[J]. International Journal of Rotating Machinery, 2017.
[5] HARRINGTON D. Forces in machine end windings[J]. Electrical Engineering, 1953,72(2): 153-153.
[6] SCOTT D J, SALON S J, KUSIK G L. Electromagnetic Forces on the Armature End Windings of Large Turbine Generators I - Steady State Conditions[J]. IEEE Transactions Power Apparatus and Systems, 1981,100 (11): 4597-4603.
[7] PATEL M R, BUTLER J M. End-Winding Vibrations in Large Synchronous Generators[J]. IEEE Transactions Power Apparatus and Systems, 1983, 102(5): 1371- 1377.
[8] KHAN G K M, BUCKLEY G W, BROOKS N. Calculation of forces and stresses on generator end-windings. I. Forces[J]. IEEE Transactions Energy Conversion, 1989,4(4):661-670.
[9] STANCHEVA R D. 3-D Electromagnetic Force Distribution in the End Region of Turbo generator[J]. IEEE Transactions on Magnetics, 2009, 45(3): 1000- 1003.
[10] ALBANESE R. Coupled Three Dimensional Numerical Calculation of Forces and Stresses on the End Windings of Large Turbo Generators via Integral Formulation[J]. IEEE Transactions on Magnetics, 2012,48(2): 875-878.
[11] HUO F, LI W, WANG L, et al. Numerical Calculation and Analysis of Three-Dimensional Transient Electromagnetic Field in the End Region of Large Water–Hydrogen– Hydrogen Cooled Turbo- generator[J]. IEEE Transactions on Industrial Electronics, 2014,61(1): 188-195.
[12] GHAEMPANAH A. Impact of rotor winding and stator stepped end core on magnetic force distribution on stator end-winding of turbo- generators[C]. 2015 IEEE Jordan Conference on Applied Electrical Engineering and Computing Technologies, Amman, 2015:1-6.
[13] IGA Y, TAKAHASHI K, YAMAMOTO Y. Finite element modelling of turbine generator stator end windings for vibration analysis[J]. IET Electric Power Applications, 2016, 10(2):75-81.
[14] ZHAO Y, YAN B, CHEN C, et al. Parametric Study on Dynamic Characteristics of Turbogenerator Stator End Winding[J]. IEEE Transactions on Energy Conversion, 2014, 29,(1):129-137.
[15] LIANG Y, YU H. Finite-Element Calculation of 3-D Transient Electromagnetic Field in End Region and Eddy-Current Loss Decrease in Stator End Clamping Plate of Large Hydro generator[J]. IEEE Transactions on Industrial Electronics, 2015, 62(12): 7331-7338.
[16] 戈宝军,毛博,林鹏等.无刷双馈电机转子偏心对气隙磁场的影响[J].电工技术学报,2020, 35 (03) :502-508.
GE Baojun, MAO Bo, LIN Peng, et al. Effect of Rotor Eccentricity Fault on Air Gap Magnetic Field in Brushless Doubly-Fed Machine [J]. Transactions of China Electrotechnical Society, 2020, 35(03): 502-508.
[17] HE Y L, KE M Q. Effect of Static Eccentricity and Stator Inter-Turn Short Circuit Composite Fault on Rotor Vibration Characteristics of Generator[J]. Transactions of the Canadian Society for Mechanical Engineering, 2015, 39(4):767-781.
[18] ZHANG Wen, HE Yu-Ling, XU Ming-Xing, et al. A comprehensive study on stator vibrations in synchronous generators considering both single and combined SAGE cases[J]. International Journal of Electrical Power & Energy Systems, 2022, 143, 108490.
[19] 何玉灵,孙凯,孙悦欣等.气隙轴向静偏心对发电机定子-绕组受载及振动的影响[J].振动工程学报, 2022, 35(03): 745-759.
HE Yuling, SUN Kai, SUN Yuexin, et al. Impact of axially static air-gap eccentricity on load and vibration of stator-winding system in generator[J]. Journal of Vibration Engineering,2022, 35(03): 745-759.
[20] 武玉才,李永刚.基于端部漏磁特征频率的汽轮发电机转子匝间短路故障诊断实验研究[J].电工技术学报,2014,29(11):107-115.
WU Yucai, LI Yonggang. Experimental Study of Rotor Inter-Turn Short Circuit Fault Diagnosis in Turbine Generator Based on Characteristic Frequency of End-Leakage-Flux [J]. Transactions of China Electrotechnical Society,2014,29(11):107-115.
[21] HAO L, WU J, ZHOU Y, et al. Theoretical Analysis and Calculation Model of the Electromagnetic Torque of Nonsalient-Pole Synchronous Machines With Interturn Short Circuit in Field Windings[J]. IEEE Transactions on Energy Conversion, 2015,30(1): 110-121.
[22] 辛鹏,戈宝军,陶大军等.多极隐极发电机励磁绕组匝间短路时的定子分支环流谐波特性[J].电工技术学报,2017,32(07):67-76.
XIN Peng, GE Baojun, TAO Dajun, et al. Stator Branch Circulating Current Harmonic Characteristics of Multipole Non-Salient-Pole Generator with Field Winding Inter-Turn Short Circuits [J]. Transactions of China Electrotechnical Society,2017,32(07):67-76.
[23] DIRANI H C, MERKHOUF A, KEDJAR B, et al. Rotor Interturn Short Circuit Impact on Large Hydrogenerator Magnetic Quantities[J]. IEEE Transactions on Industry Applications, 2018,54(4): 3702-3711.
[24] MA-Ming Han. Fault diagnosis method based on multi-source information fusion for weak interturn short circuit in synchronous condensers[J]. IET Electric Power Applications , 2021,15(9):1245-1260.
[25] HE Y L, WANG Y, JIANG H C, et al. A Novel Universal Model Considering SAGE for MFD-based Faulty Property Analysis under RISC in Synchronous Generators[J]. IEEE Transactions on Industrial Electronics, 2022,69(7): 7415-7427.
[26] HE Y L, XU M X, ZHANG W, et al. Impact of Stator Interturn Short Circuit Position on End Winding Vibration in Synchronous Generators[J]. IEEE Transactions Energy Conversion, 2021,36(2):713-724.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}