六阶电力系统混沌振荡的有限时间滑模控制

曹骞, 韦笃取

振动与冲击 ›› 2024, Vol. 43 ›› Issue (14) : 156-162.

PDF(1473 KB)
PDF(1473 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (14) : 156-162.
论文

六阶电力系统混沌振荡的有限时间滑模控制

  • 曹骞,韦笃取
作者信息 +

Finite-time sliding mode control of chaotic oscillations in sixth-order power systems

  • CAO Qian,WEI Duqu
Author information +
文章历史 +

摘要

电力系统作为一个典型的复杂动态系统,在实际运行过程中,特定的参数及初始值可能会使其产生混沌振荡,甚至导致整个电力系统崩溃。为了抑制电力系统的混沌,本文为六阶电力系统设计混沌控制器。首先,利用时间序列图和相图对复杂的六阶电力系统的基本动力学行为进行了分析,证明其存在混沌行为;然后,基于电力系统混沌振荡由能量过剩引起的思路,引入储能装置的动态模型,吸收受控系统过剩的有功功率,并提出了一种稳定的有限时间滑模控制方法来抑制系统的混沌振荡,最后,数值仿真验证了所设计控制器的有效性。

Abstract

As a typical complex dynamic system, the power system, with specific parameters and initial values, may cause chaotic oscillations in the actual operation and even lead to the collapse of the whole power system. In order to suppress the chaos in power systems, this paper designs chaotic controllers for sixth-order power systems. First, the basic dynamical behavior of the complex sixth-order power system is analyzed using time series diagram and phase diagram to prove the existence of chaotic behavior; then, based on the idea that chaotic oscillations in power systems are caused by excess energy, a dynamic model of energy storage device is introduced to absorb the excess active power of the controlled system, and a stable finite-time sliding mode control method is proposed to suppress the chaotic oscillations of the system, At the same time, hyperbolic tangent function is introduced to suppress the chatter; finally, numerical simulation verifies the effectiveness of the designed controller.

关键词

六阶电力系统 / 混沌振荡 / 储能装置 / 有限时间滑模控制 / 双曲正切函数

Key words

sixth-order power systems / chaotic oscillations / energy storage device / finite-time sliding mode control / hyperbolic tangent function

引用本文

导出引用
曹骞, 韦笃取. 六阶电力系统混沌振荡的有限时间滑模控制[J]. 振动与冲击, 2024, 43(14): 156-162
CAO Qian, WEI Duqu. Finite-time sliding mode control of chaotic oscillations in sixth-order power systems[J]. Journal of Vibration and Shock, 2024, 43(14): 156-162

参考文献

[1] YU Y, JIA H, LI P, et al. Power system instability and chaos [J]. Electric Power Systems Research, 2003,65(3):187-195. [2] QIN Y H, LI J C. Random parameters induce chaos in power systems [J]. Nonlinear Dynamics, 2014,77(4):1609–1615. [3] CHIANG H D, LIU C W, VARAIYA P P, et al. Chaos in a simple power system [J]. IEEE Transactions on Power Systems, 1993,8(4):1407-1417. [4] 王聪,张宏立,马萍. 基于有限时间函数投影的电力系统混沌控制 [J]. 振动与冲击, 2021, 40(14): 125-131. WANG Cong, ZHANG Hongli, MA Ping. Finite-time function projective synchronization control method for a chaotic power system [J]. Journal of Vibration and Shock, 2021, 40(14): 125-131. [5] YANG F, SHEN Y, LI D, et al. Fractional-order sliding mode load frequency control and stability analysis for interconnected power systems with time-varying delay [J]. IEEE Transactions on Power Systems, 2023, Doi: 10.1109/TPWRS.2023.3242938. [6] LV Y, ZHANG Y, LIU Q, et al. Sliding mode control of two-parameter fourth-order chaos model of power system [J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2021, 69(12): 4849-4853. [7] WANG J, LIU C, WANG Y, et al. Fixed time integral sliding mode controller and its application to the suppression of chaotic oscillation in power system [J]. Chinese Physics B, 2018, 27(7): 070503. [8] NI J, LIU L, LIU C, et al. Fast fixed-time nonsingular terminal sliding mode control and its application to chaos suppression in power system [J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2016, 64(2): 151-155. [9] DING S, MEI K, YU X. Adaptive second-order sliding mode control: A Lyapunov approach [J]. IEEE Transactions on Automatic Control, 2021, 67(10): 5392-5399. [10] SHAO K, TANG R, XU F, et al. Adaptive sliding mode control for uncertain Euler–Lagrange systems with input saturation [J]. Journal of the Franklin Institute, 2021, 358(16): 8356-8376. [11] LIU X, YU H. Continuous adaptive integral-type sliding mode control based on disturbance observer for PMSM drives [J]. Nonlinear dynamics, 2021, 104: 1429-1441. [12] 郭宇飞,许盛悦,李慧子等.基于改进滑模趋近律的振动基机械臂的有限时间轨迹跟踪控制[J].振动与冲击,2022,41(20):86-92+194.DOI:10.13465/j.cnki.jvs.2022.20.011. GUO Yufei, XU Shengyue, LI Zihui, et al. Finite-time trajectory tracking control of oscillatory-based manipulators based on an improved sliding mode reaching law [J]. Journal of Vibration and Shock, 2022,41(20):86-92+194.DOI:10.13465/j.cnki.jvs.2022.20.011. [13] POLYAKOV A. Nonlinear feedback design for fixed-time stabilization of linear control systems [J]. IEEE Transactions on Automatic Control, 2011, 57(8): 2106-2110. [14] ZUO Z. Non‐singular fixed‐time terminal sliding mode control of non‐linear systems [J]. IET control theory & applications, 2015, 9(4): 545-552. [15] ZUO Z, LIN T. Distributed robust finite-time nonlinear consensus protocols for multi-agent systems [J]. International Journal of Systems Science, 2016, 47(6): 1366-1375. [16] MOULAY E, LÉCHAPPÉ V, BERNUAU E, et al. Robust fixed-time stability: Application to sliding-mode control [J]. IEEE Transactions on Automatic Control, 2021, 67(2): 1061-1066. [17] MOULAY E, LÉCHAPPÉ V, BERNUAU E, et al. Fixed-time sliding mode control with mismatched disturbances [J]. Automatica, 2022, 136: 110009. [18] FANG J, YAO W, CHEN Z, et al. Design of anti-windup compensator for energy storage-based damping controller to enhance power system stability [J]. IEEE Transactions on Power Systems, 2013, 29(3): 1175-1185. [19] SRIVASTAVA K N, SRIVASTAVA S C. Elimination of dynamic bifurcation and chaos in power systems using facts devices [J]. IEEE Transactions on Circuits and Systems I, 1998, 45(1): 72-78. [20] JING Z, XU D, CHANG Y, et al. Bifurcations, chaos, and system collapse in a three node power system [J]. International Journal of Electrical Power & Energy Systems, 2003, 25(6): 443-461. [21] RAJESH K G, PADIYAR K R. Bifurcation analysis of a three node power system with detailed models [J]. International Journal of Electrical Power & Energy Systems, 1999, 21(5): 375-393. [22] POLYCARPOU M M, IOANNOU P A. A robust adaptive nonlinear control design [C]//1993 American control conference. IEEE, 1993: 1365-1369. [23] JIANG B, HU Q, FRISWELL M I. Fixed-time rendezvous control of spacecraft with a tumbling target under loss of actuator effectiveness [J]. IEEE Transactions on Aerospace and Electronic Systems, 2016, 52(4): 1576-1586. [24] SUN Y, CHEN B, LIN C, et al. Finite-time adaptive control for a class of nonlinear systems with nonstrict feedback structure [J]. IEEE transactions on cybernetics, 2017, 48(10): 2774-2782. [25] YU Y, JIA H, WANG C. Chaotic phenomena and small signal stability region of electrical power systems [J]. Science in China Series E: Technolgical Science, 2001, 44: 187-199. [26] JIA H, YU Y, YU X, et al. Three routes to chaos in power systems [C]//Canadian Conference on Electrical and Computer Engineering 2004 (IEEE Cat. No. 04CH37513). IEEE, 2004, 1: 79-84. [27] 贾宏杰,余贻鑫,王成山.电力系统混沌现象及相关研究 [J].中国电机工程学报,2001, 21(07):27-31. JIA Hongjie, YU Yixin, WANG Chengshan. Chaotic phenomena in power systems and its studies [J]. Proceedings of the CSEE, 2001, 21(07):27-31. [28] WANG J, LIU L, LIU C. Sliding mode control with mismatched disturbance observer for chaotic oscillation in a seven‐dimensional power system model [J]. International Transactions on Electrical Energy Systems, 2020, 30(11): e12583. [29] WANG J, LIU L LIU C, et al. Fixed-time synergetic control for a seven-dimensional chaotic power system model [J]. International Journal of Bifurcation and Chaos, 2019, 29(10): 1950130. [30] WANG J, LIU L, LIU C, et al. Chaos control in six-dimensional power system via adaptive synergetic approach [J]. Journal of Vibration and Control, 2020, 26(9-10): 790-800.

PDF(1473 KB)

Accesses

Citation

Detail

段落导航
相关文章

/