附设粘滞阻尼器的RC框架结构抗震韧性评估

张皓1,阮鹏飞1,李宏男1,2,侯世伟1

振动与冲击 ›› 2024, Vol. 43 ›› Issue (14) : 172-179.

PDF(3767 KB)
PDF(3767 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (14) : 172-179.
论文

附设粘滞阻尼器的RC框架结构抗震韧性评估

  • 张皓1,阮鹏飞1,李宏男1,2,侯世伟1
作者信息 +

Evaluation of the seismic resilience of RC frame structures with viscous dampers

  • ZHANG Hao1,RUAN Pengfei1,LI Hongnan1,2,HOU Shiwei1
Author information +
文章历史 +

摘要

为研究粘滞阻尼器对RC框架结构抗震韧性影响,基于增量动力时程分析方法,对附设粘滞阻尼器的RC框架结构开展抗震韧性能力评估。结合FEMA P-58以及我国抗震韧性评价标准,将主要受损构件的修复费用、修复时间曲线以及易损性信息按实际情况进行相应修正,并对无控结构(UCS)和有控结构(CS)的修复费用、修复时间和人员伤亡等主要抗震韧性指标进行对比分析,明确了粘滞阻尼器对RC框架结构抗震韧性的影响。研究表明:在RC框架结构中适当设置粘滞阻尼器不仅能够减小结构地震响应、降低结构破坏概率,还能有效提升结构抗震韧性。

Abstract

In order to study the influences of viscous dampers on the seismic resilience of RC frame structure, the seismic resilience assessment of RC frame structure with viscous damper was carried out based on the incremental dynamic time history analysis method. Combined with FEMA P-58 and Chinese seismic resilience assessment standards, the repair cost, repair time curve and fragility information of the main damaged components are corrected accordingly, also compare and analyze the main seismic resilience indicators such as repair cost, repair time, and personnel casualties of uncontrolled structures (UCS) with controlled structures (CS) to clarified the influences of viscous damper on the seismic resilience of RC frame structure. The results show that setting up viscous dampers properly in RC frame structure can not only reduce the seismic response of the structure, lower the probability of structural failure, but also effectively improve the seismic resilience of the structure.

关键词

RC框架结构 / 粘滞阻尼器 / 增量动力时程分析 / 抗震韧性

Key words

RC frame structures / viscous dampers / incremental dynamic time history analysis / seismic resilience

引用本文

导出引用
张皓1,阮鹏飞1,李宏男1,2,侯世伟1. 附设粘滞阻尼器的RC框架结构抗震韧性评估[J]. 振动与冲击, 2024, 43(14): 172-179
ZHANG Hao1,RUAN Pengfei1,LI Hongnan1,2,HOU Shiwei1. Evaluation of the seismic resilience of RC frame structures with viscous dampers[J]. Journal of Vibration and Shock, 2024, 43(14): 172-179

参考文献

[1] 建筑抗震韧性评价标准:GB/T 38591-2020[S] 北京:中国建筑工业出版社,2020. standard for seismic resilience assessment of buildings:GB/ T 38591-2020[S] Beijing: China Architecture & Building Press, 2020. [2] 任军宇,潘鹏,王涛,等. GB/T 38591—2020《建筑抗震韧性评价标准》解读[J]. 建筑结构学报,2021, 42(01): 48-56. REN Jun-yu, PAN Peng, WANG Tao, et al. Interpretationof GB/ T 38591—2020 Standard for seismic resilience assessment of buildings [J]. Journal of Building Structures,2021, 42(1): 48-56. [3] 曾翔,刘诗璇,许镇,等. 基于FEMA-P58方法的校园建筑地震经济损失预测案例分析[J]. 工程力学,2016, 33(S1): 113-118. ZENG Xiang, LIU Shi-xuan, XU Zhen, et al. Earthquake loss prediction for campus buildings based on FEMA-P58method: A case study [J]. Engineering Mechanics, 2016, 33(S1): 113−118. [4] Federal Emergency Management Agency ( FEMA ).Seismic performance assessment of buildings: FEMA P-58:volume 1:Methodology [S]. Washington DC: FEMA, 2012. [5] Federal Emergency Management Agency ( FEMA ).Seismic performance assessment of buildings: FEMA P-58:volume 2:implementation guide [ S]. Washington DC: FEMA, 2012. [6] 吴继伟,梁兴文,朱汉波. FEMAP58新一代建筑抗震性能评估方法[J]. 地震工程与工程振动,2015, 35(03): 37-43. WU Ji-wei, LIANG Xing-wen, ZHU Han-bo. FEMA P-58-next-generation performance assessment of buildings [ J]. Earthquake Engineering and Structural Dynamics, 2015, 35(03): 37-43. [7] 许镇,郑铭,张华振,等. 结合BIM和FEMA P-58的建筑地震损失精细化预测方法[C]//中国图学学会建筑信息模型(BIM)专业委员会. 第五届全国BIM学术会议论文集. 北京:中国建筑工业出版社, 2019. 19-23. XU Zhen, ZHENG Ming, ZHANG Hua-zhen, et al. Combining BIM and FEMA P-58 to refine the prediction method of building seismic loss [C]//Building Information Modelling (BIM) Professional Committee of China Graphics Society. Proceedings of the 5th National BIM Academic Conference. Beijing: China Architecture & Building Press, 2019. 19-23. [8] 杜轲,燕登,高嘉伟,等. 基于FEMA P-58的RC框架结构抗震及减隔震性能评估[J]. 工程力学,2020, 37(08): 134-147. DU Ke, YAN Deng, GAO Jia-wei, et al. Seismic performance assessment of RC frame structures with energy dissipation and isolation devices based on FEMA P-58 [J]. Engineering Mechanics, 2020, 37(8): 134-147. [9] 董尧,徐铭阳,吕大刚. 高层RC框架-剪力墙结构地震风险与抗震韧性评估[J]. 建筑结构学报, 2022, 43(S1): 31-42. DONG Yao, XU Ming-yang, LV Da-gang. Seismic risk and resilience assessment for high-rise RC frame-shear wall structures[J]. Journal of Building Structures, 2022, 43(S1): 31-42. [10] 陈寅圳,贾明明,吕大刚. 基于刚柔指标的高层钢框架抗震韧性评估[J]. 工程力学, 2023, 40(S1):92-97+119. CHENG Yin-zhen, JIA Ming-ming, LV Da-gang. Earthquake resilience evaluation of high-rise steel frame structures based on the stiffness-flexibility indicator[J] Engineering Mechanics, 2023, 40(S1):92-97+119. [11] 周颖,赵佳美,肖意. 基于不同评价标准的屈曲约束支撑-钢框架建筑抗震韧性评价研究[J]. 建筑结构学报, 2023, 44(04):204-215. ZHOU Ying, ZHAO Jia-mei, XIAO Yi. Study on seismic resilience assessment of BRB-steel frame building based on various assessment standards[J]. Journal of Building Structures, 2023, 44(04):204-215. [12] 燕乐纬,陈洋洋,王龙,等. 基于相对适应度遗传算法的高层结构粘滞阻尼器优化布置[J]. 振动与冲击,2014,33(06): 195-200. YAN Le-wei,CHEN Yang-yang,WANG Long,et al.Optimum installation of viscous dampers in tall buildings based on relative fitness genetic algorithm[J]. Journal of Vibration and Shock,2014,33(06): 195 - 200. [13] 吴占景,薛建阳,隋䶮. 附设粘滞阻尼器的传统风格建筑钢结构双梁-柱节点动力试验研究[J]. 振动与冲击,2020, 39(04): 199-206+214. WU Zhan-jing, XUE Jian-yang, SUI Yan. A dynamic loading test for steel double-beam column joints in traditional style buildings with viscous damper[J] Journal of Vibration and Shock, 2020, 39(04): 199-206+214. [14] 任森智. 多维地震动作用下框架结构的地震反应分析[J]. 工程抗震与加固改造,2010, 32(02): 16-19. REN Zhi-sen. Seismic Response Analysis of Framework Structure under Multi-dimensional Seismic [J] Earthquake Resistant Engineering and Retrofitting, 2010, 32(02): 16-19. [15] 李英民,刘建伟,周自强. 基于性能的抗震加固方法在框架结构中的应用[J]. 建筑结构,2012, 42(07): 88-92. LI Ying-min, LIU Jian-wei, ZHOU Zi-qiang,. Application of performance-based seismic retrofit for a frame building [J]. Building Structure, 2012, 42(07): 88-92. [16] GB 50011-2010. 建筑抗震设计规范[S]. 北京:中国建筑工业出版社,2016. GB 50011—2010. Code for seismic design of buildings[S]. Beijing: China Construction Industry Press, 2016. [17] 曲激婷,李宏男. 粘弹性阻尼器在结构减震控制中的位置优化研究[J]. 振动与冲击,2008, 27(06): 87-91. QU Ji-ting,LI Hong-nan. Optimal placement of viscoelastic dampers for passive response control[J]. Journal of Vibration and Shock, 2008, 27(06): 87-91. [18] Jorge C, Alejandro B. Influence of Maxwell Stiffness in Damage Control and Analysis of Structures with Added Viscous Dampers[J]. Applied Sciences, 2021, 11(7). [19] 高德志,毕鹏,刘艳. 各国规范关于时程分析中地震波选取方法的对比[J]. 建筑结构,2022, 52(16): 67-73. GAO De-zhi, BI Peng, LIU Yan. Comparison of the selection methods of seismic waves in time-history analysis by national codes [J]. Building Structure, 2022, 52(16): 67-73. [20] 吕大刚,刘亭亭,李思雨等. 目标谱与调幅方法对地震动选择的影响分析[J].地震工程与工程振动, 2018, 38(04): 21-28. LV Da-gang,LIU Ting-ting,LI Si-yu,et.al. Investigation of effects of target spectrum and amplitude scaling methods on selection of ground motions[J]. Earthquake Engineering and Engineering Dynamics,2018,38(4): 21 -28. [21] 赵作周,胡妤,钱稼茹. 中美规范关于地震波的选择与框架-核心筒结构弹塑性时程分析[J]. 建筑结构学报, 2015, 36(02): 10-18. ZHAO Zuo-zhou, HU Yu, QIAN Jia-ru. Comparison of ground motion selection between Chinese and American methods and elasto-plastic time history analysis of frame-core wall structures [J] Journal of Building Structures, 2015, 36(02): 10-18. [22] TY 01-89-2016. 建筑安装工程工期定额[S]. 北京: 中国计划出版社, 2016. TY 01-89-2016. Quota for construction and installation works[S]. Beijing: China Planning Publishing House, 2016. [23] GB 50189-2005. 公共建筑节能设计标准[S]. 北京: 中国建筑工业出版社,2005. GB 50189-2005. Energy efficiency design standards for public buildings[S]. Beijing: China Architecture & Building Press, 2005. [24] JGJ/T 67-2019. 办公建筑设计标准[S]. 北京: 中国建筑工业出版社, 2019. JGJ/T 67-2019. Office building design standards[S]. Beijing: China Architecture & Building Press, 2019.

PDF(3767 KB)

254

Accesses

0

Citation

Detail

段落导航
相关文章

/