中低速磁浮列车悬浮架纵梁结构优化

张明康1,2,肖乾1,雷成2,石小牒1,王爱彬3,符远航1

振动与冲击 ›› 2024, Vol. 43 ›› Issue (14) : 180-188.

PDF(2157 KB)
PDF(2157 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (14) : 180-188.
论文

中低速磁浮列车悬浮架纵梁结构优化

  • 张明康1,2,肖乾1,雷成2,石小牒1,王爱彬3,符远航1
作者信息 +

Structural optimization of the levitation bogie longitudinal beam of a med-low speed maglev train

  • ZHANG Mingkang1,2,XIAO Qian1,LEI Cheng2,SHI Xiaodie1,WANG Aibin3,FU Yuanhang1
Author information +
文章历史 +

摘要

为得到具有理想承载性能同时又满足轻量化设计要求的中低速磁浮列车悬浮架结构,利用有限元软件建立悬浮架有限元模型,对悬浮架关键工况进行计算分析并结合强度试验验证有限元模型的可靠性。选取悬浮架纵梁为研究对象,分别基于多项式响应面法、Kriging法构造目标参数关于设计变量的代理模型,并对三种代理模型精度进行比较,得到目标参数随设计变量的最优代理模型,利用多目标优化算法进行计算寻优,得到代理模型的最优解集并通过仿真计算对最优结果进行验证。研究结果表明:Kriging法响应面模型的拟合精度高于多项式的二次和线性响应面模型;优化后悬浮架纵梁结构相比于原设计方案在满足强度可靠性要求的前提下,纵梁结构质量降低了16.9%。

Abstract

To obtain the levitation bogie structure of the med-low speed maglev vehicle with ideal bearing capacity and meeting the lightweight design requirements, the finite element model of the levitation bogie is established by using the finite element software, and the key working conditions of the levitation bogie is calculated and analyzed, and the reliability of the finite element model is verified by combining the strength test. The longitudinal beam of the levitation bogie is selected as the research object, and the surrogate models of the target parameters with respect to the design variables are constructed based on the polynomial response surface method and Kriging method respectively, and the three surrogate models are compared to obtain the optimal surrogate model. The optimal solution set of the surrogate model are obtained by using multi-objective optimization algorithms, and the optimal results are verified by simulation calculation. Results indicated that the fitting accuracy of Kriging response surface model is higher than that of polynomial linear and quadratic response surface model. Compared to the original design scheme, the optimized levitation bogie frame structure reduces the quality of the longitudinal beam structure by 16.9% while meeting the strength and reliability requirements.

关键词

悬浮架 / 试验 / 代理模型 / 结构优化 / 有限元仿真

Key words

Levitation bogie / Experiment / Surrogate mode / Structure optimization / Finite element simulation

引用本文

导出引用
张明康1,2,肖乾1,雷成2,石小牒1,王爱彬3,符远航1. 中低速磁浮列车悬浮架纵梁结构优化[J]. 振动与冲击, 2024, 43(14): 180-188
ZHANG Mingkang1,2,XIAO Qian1,LEI Cheng2,SHI Xiaodie1,WANG Aibin3,FU Yuanhang1. Structural optimization of the levitation bogie longitudinal beam of a med-low speed maglev train[J]. Journal of Vibration and Shock, 2024, 43(14): 180-188

参考文献

[1] 徐飞,罗世辉,邓自刚.磁悬浮轨道交通关键技术及全速度域应用研究[J].铁道学报,2019,41(03):40-49. XU Fei, LUO Shi-hui, DENG Zi-gang. Study on key technologies and whole speed range application of maglev rail transport[J]. Journal of the China railway society,2019,41(03):40-49. [2] 李苗,马卫华,龚俊虎,刘文亮,高定刚,罗世辉.中低速磁浮车辆-桥梁耦合系统动力性能试验[J].交通运输工程学报,2022,22(01):141-154. LI Miao, MA Wei-hua, GONG Jun-hu, et al. Dynamic performance test of medium and low speed maglev vehicle-bridge coupled system[J].Journal of Traffic and Transportation Engineering, 2022, 22(1): 141-154. [3] SARUNAN R.“Low speed”magnetic levitation vehicle in the US[C]. //Proceeding of the 1999 ASME/IEEE Joint Railload Conference. Dallas,1999. [4] 马军,孙秦.磁悬浮列车走行机构关键部件DFR法疲劳寿命估算[J].机械设计与制造,2008(06):38-40. MA Jun, SUN Qin. Fatigue life estimation of the key part of the maglev running frame based on DFR method[J].Machinery Design & Manufacture,2008(06): 38-40. [5] Han J W, Kim H S, Bang J S, et al. Fatigue strength evaluation of bogie frame of urban maglev train[J]. Transactions of the Korean Society of Mechanical Engineers A, 2013, 37(7): 945-951. [6] Kim K J, Lee J M, Lee N J, et al. Prediction of dynamic loads on the aluminum bogie of a maglev vehicle using flexible multibody dynamics[C]//Proceedings of Conference of the Korean Society for Railway. 2009: 2773-2778. [7] Han S W, Woo K J. Evaluation of dynamic fatigue life for maglev bogie frame[J]. Journal of the Korean Society for Railway, 2010, 13(1): 1-8. [8] 杨磊,赵志苏.磁悬浮列车转向架结构强度的有限元分析[J].机械,2004(02):13-15+30. YANG Lei, ZHAO Su-zhi. The finite element analysis on structure strength of the maglev bogie[J]. Machinery,2004(02): 13-15+30. [9] 迟振华,刘放,赵兴忠,吴元科.基于表面外推热点应力法的悬浮架疲劳强度分析[J].现代制造工程,2015(10):8-11+26. CHI Zhen-hua, LIU Fang, ZHAO Xing-zhong,et al. Research on fatigue anslysis of levitation chassis using hot spot stress method based on surface extrapolation[J]. Modern Manufacturing Engineering,2015(10):8-11+26. [10] 吴元科,刘放,张斌,杨小平,吴灿龙.长定子中低速磁浮列车悬浮架疲劳寿命分析[J].现代制造工程,2016(08):54-59+94. WU Yuan-ke, LIU Fang, ZHANG Bin,et al. Fatigue life analysis of levitation chassis of long stator maglev vehicle[J]. Modern Manufacturing Engineering, 2016(08): 54-59+94. [11] 胡齐斌.新型中低速磁浮列车悬浮架强度试验方法研究[D].西南交通大学,2020. HU Qi-bin. Research on the strength test method of the levitation bogie for new-type mid-low speed maglev vehicle[D]. Southwest Jiaotong University,2020. [12] 李强,姚毓瑾,虞大联,袁雨青.高速磁悬浮列车悬浮架结构可靠性研究[J].北京交通大学学报,2020,44(01):70-76. LI Qiang, YAO Yu-jin, YU Da-lian,et al. Structural reliability analysis of levitation chassis of high-speed maglev[J]. Journal of Beijing Jiaotong University, 2020,44(1):70-76. [13] 马卫华,胡俊雄,李铁等.EMS型中低速磁浮列车悬浮架技术研究综述[J].西南交通大学学报,2023,58(04):720-733. MA Wei-hua, HU Jun-xiong, LI Tie,et al.The Technologies Research Reviews of EMS medium and low-speed maglev train levitation frame[J]. Journal of Southwest Jiaotong University. [14] 马卫华,罗世辉,张敏,盛卓航.中低速磁浮车辆研究综述[J].交通运输工程学报,2021,21(01):199-216. MA Wei-hua, LUO Shi-hui, ZHANG Min,et al. Research Review on medium and low speed maglev vehicle[J].Journal of Traffic and Transportation Engineering,2021,21 (01):199-216. [15] European Committee for Standardization. EN13749:Railway Applications Methods of Specifying Structure Requirements of Bogie Frames[S]. British:Standards Policy and Strategy Committee, 2011. [16] International Union of Railways. UIC 615-4:2003. Motive Power Units-Bogie and Running Gear-Bogie Frame Structure Strength Tests[S]. France: International Union of Railway,2011. [17] 中华人民共和国铁道部. TB/T 2368-2005. 动力转向架构架强度试验方法[S].北京:中国铁道出版社,2005. Ministry of Railways of the People's Republic of China. TB/T 2368-2005. Motive Power Units-Bogies and Running Gear-bogie Frame Structure Strength Tests[S].Beijing:China Railway Publishing House,2005. [18] FORSBERG J, NILSSON L. Evaluation of Response Surface Methodologies Used in Crashworthiness Optimization[J]. International Journal of Impact Engineering, 2006,32(5): 759-777. [19] XIANG Y, WANG Q, FAN Z, et al. Optimal Crashworthiness Design of a Spot-Welded Thin-Walled Hat Section[J]. Finite Elements in Analysis and Design,2006,42(10):846-855. [20] 李永华,李东明,宫琦,吴永鑫.动车组电机吊架多目标可靠性优化设计[J].机械科学与技术,2021,40(07):1100-1105. LI Yong-hua, LI Dong-ming, Gong Qi,et al. Multi-objective Reliability Optimization Design of Motor Hanger for EMU[J]. Mechanical Science and Technology for Aerospace Engineering 2021,40(07): 1100-1105. [21] Xie Su-chao, Zhou Hui.Analysis and optimisation of parameters influencing the out-of-plane energy absorption of an aluminium honeycomb. Thin-Walled Structures,2015, 89: 169-177. [22] 谢素超,周辉.基于Kriging法的铁道车辆客室结构优化[J].中南大学学报(自然科学版),2012,43(05):1990-1998. XIE Suchao, ZHOU Hui. Optimization on passenger compartment structure of railway vehicle based on Kriging mothod. Journal of Central South University(Science and Technology),2012,43(05):1990-1998. [23] 许平,杨丽婷,姚曙光等.城轨列车方锥式防爬吸能结构碰撞力学参数设计及多目标优化[J].中南大学学报(自然科学版),2022,53(05):1689-1699. XU Ping,YANG Liting,YAO Shuguang, et al. collision mechanics parameter design and muti-objective optimization of square cone anti-climbing energy-absorbing structure for urban rail trains[J].Journal of Central South University,2022,53(05):1689-1699. [24] WANG Junyan, LU Zhaijun, ZHONG Mu, et al. Coupled thermal–structural analysis and multi-objective optimization of a cutting-type energy-absorbing structure for subway vehicles[J]. Thin-Walled Structures, 2019, 141: 360-373. [25] 沈彦佑,贾民平,朱林.基于拉丁超立方抽样的离心式吸叶机噪声分析与降噪优化研究[J].振动与冲击,2016,35(15):93-97. SHEN Yan-you, JIA Min-ping, ZHU Lin. Noise Analysis of a Centrifugal Leaf Vacuum based on Latin Hypercube Sampling[J].Journal of Vibration and Shock,2016,35(15):93-97. [26] MENG D B, YANG S Q, ZHANG Y, et al. Structural reliability analysis and uncertainties-based collaborative design and optimization of turbine blades using surrogate model[J]. Fatigue & Fracture of Engineering Materails & Structures, 2018, 42(6):1219-1227. [27] 周伟,李敏,丘铭军,张西龙,柳江,张洪波.基于改进遗传算法的车身板件厚度优化[J].清华大学学报(自然科学版),2022,62(03):523-532. ZHOU Wei, LI Min, QIU Ming-jun,et,al. Vehicle Body Panel Thickness Optimization by a Genetic Algorithm[J]. Journal of Tsinghua University (Science and Technology), 2022,62(03):523-532.

PDF(2157 KB)

Accesses

Citation

Detail

段落导航
相关文章

/