TC17钛合金叶片振动疲劳寿命研究

沈雪红1,韩栋1,关艳英1,张定华2

振动与冲击 ›› 2024, Vol. 43 ›› Issue (14) : 211-216.

PDF(1815 KB)
PDF(1815 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (14) : 211-216.
论文

TC17钛合金叶片振动疲劳寿命研究

  • 沈雪红1,韩栋1,关艳英1,张定华2
作者信息 +

Vibration fatigue life of TC17 titanium alloy blades

  • SHEN Xuehong1,HAN Dong1,GUAN Yanying1,ZHANG Dinghua2
Author information +
文章历史 +

摘要

叶片属于典型的薄壁曲面构件,其服役环境恶劣,在交变应力作用下经过一定循环周次后发生疲劳断裂,严重影响发动机的可靠性和耐持久性。为了研究叶片振动状态下的疲劳性能,采用不同工艺参数加工叶片,测试其表面粗糙度、残余应力、显微硬度,并进行叶片的振动疲劳试验和疲劳断口分析。结果表明:TC17钛合金叶片的危险位置在叶背,距叶尖48.1mm,距进气边26.9mm处;叶片的表面粗糙度为0.373μm,表面应力集中系数为1.014,表面残余应力为-319.38MPa,表面显微硬度为412.53HV时,获得最高疲劳寿命8.91×105周次;残余应力对叶片振动疲劳寿命的影响最显著,其次是表面应力集中系数,最后是显微硬度;铣削加工叶片的疲劳失效模式为表面单源起始,疲劳源区有明显的放射线特征,裂纹扩展区有疲劳条带和二次裂纹,瞬断区有韧窝特征,属于韧性断裂。

Abstract

Blades are typical thin-walled curved components that operate in harsh environments. Under the action of alternating stress, fatigue fracture occurs after a certain number of cycles, which seriously affects the reliability and durability of the engine. In order to study the fatigue performance of blades under vibration, blades were processed with different process parameters, and their surface roughness, residual stress, and microhardness were tested. Vibration fatigue tests and fatigue fracture analysis of the blades were also performed. The results show that the dangerous position of the TC17 titanium alloy blade is on the back of the blade, 48.1mm from the blade tip and 26.9mm from the air inlet edge; the surface roughness of the blade is 0.373μm, the surface stress concentration coefficient is 1.014, the surface residual stress is -319.38MPa, and the surface microhardness is 412.53HV. The highest fatigue life of 8.91×105 cycles was obtained when the surface residual stress was considered. The residual stress has the most significant effect on the fatigue life of the blade, followed by the surface stress concentration coefficient, and finally the microhardness. The fatigue failure mode of the milled blade is a surface single-source start, and the fatigue source area has obvious radiation characteristics, the crack extension area has fatigue stripes and secondary cracks, and the instantaneous fracture area has toughness characteristics, which belongs to toughness fracture.

关键词

叶片 / TC17钛合金 / 表面应力集中系数 / 残余应力 / 振动疲劳寿命

Key words

Blades / TC17 titanium alloy / surface stress / concentration coefficient / residual stress / vibration fatigue life.

引用本文

导出引用
沈雪红1,韩栋1,关艳英1,张定华2. TC17钛合金叶片振动疲劳寿命研究[J]. 振动与冲击, 2024, 43(14): 211-216
SHEN Xuehong1,HAN Dong1,GUAN Yanying1,ZHANG Dinghua2. Vibration fatigue life of TC17 titanium alloy blades[J]. Journal of Vibration and Shock, 2024, 43(14): 211-216

参考文献

[1] 闫晓军, 聂景旭. 涡轮叶片疲劳[M]. 北京: 科学出版社, 2014. YAN Xiaojun, NIE Jingxu. Fatigue of turbine blades [M]. Beijing: Science Press, 2014. [2] 王欣, 李旭东, 宋颖刚, 等. 三种典型发动机用材料疲劳极限应力集中敏感性及喷丸的影响[J]. 航空制造技术, 2021, 64(6):96-101. WANG Xin, LI Xudong, SONG Yinggang, et al. The sensitivity of fatigue limit stress concentration and the effect of shot peening on three typical engine materials[J]. Aerospace Manufacturing Technology, 2021, 64 (6): 96-101. [3] 胡钰昊, 田伟, 刘砚飞, 等. 模拟打伤/抛修缺口对TC17钛合金叶片振动疲劳性能的影响[J]. 航空材料学报, 2017, 6(37):102-107. HU Yuhao, TIAN Wei, LIU Yanfei, et al. The effect of simulated damage/chipping on the vibration fatigue performance of TC17 titanium alloy blades[J]. Journal of Aerospace Materials, 2017, 6 (37): 102-107. [4] 刘兵, 何国球, 蒋小松, 等. 材料疲劳寿命的影响因素和研究方法[J]. 材料导报, 2011, 25(09):103-106. LIU Bing, HE Guoqiu, JIANG Xiaosong, et al. The influencing factors and research methods of material fatigue life[J]. Material Introduction, 2011, 25 (09): 103-106. [5] NOVOVIC D, DEWES RC, ASPINWALL DK, et al. The effect of machined topography and integrity of fatigue life[J]. International Journal of Machine Tool &Manufacture, 2004, 44(2-3):125-134. [6] 章刚, 刘军, 刘永寿, 等. 表面粗糙度对表面应力集中系数和疲劳寿命影响分析[J]. 机械强度, 2010, 32(1): 110-115. ZHANG Gang, LIU Jun, LIU Yongshou, et al. Analysis of the influence of surface roughness on surface stress concentration coefficient and fatigue life[J] Mechanical strength, 2010, 32 (1): 110-115. [7] SUN J F, WANG T M, SU A P. Surface integrity and its influence on fatigue life when turning nickel alloy GH4169[J]. Procedia CIRP, 2018, 71: 478-483. [8] DE LOS RIOS ER, TRULL M, LEVERS A. Modelling fatigue crack growth in shot-peened components of Al 2024-T351[J]. Fatigue & Fracture of Engineering Material & Structures, 2000, 23(8):709-716 [9] NIE X, HE W, ZANG S, et al. Effect study and application to improve high cycle fatigue resistance of TC11titanium alloy by laser shock peening with multiple impacts[J]. Surface and Coatings Technology, 2014, 253:68-75. [10] ZUO J H, WANG A G, HAN E H. Effect of microstructure on ultra-high cycle fatigue behavior of Ti-6Al-4V[J]. Material Science &Engineering A, 2008, 473(1-2): 147-152. [11] HULTGREN G, MANSOUR R, BARSOUM Z, et al. Fatigue probability model for AWJ-cut steel including surface roughness and residual stress[J]. Journal of Construction Steel Research, 2021, 179: 106537.1-106537.16. [12] WU G Q, SHI C L, SHA W, et al. Effect of microstructure on the fatigue properties of Ti-6Al-4V titanium alloy[J]. Materials & Design, 2013,46: 668-674. [13]谭靓, 姚倡锋, 张定华. 7055铝合金高速加工表面完整性对疲劳寿命的影响[J]. 机械科学与技术, 2015, 34(06): 872-876. TAN Liang, YAO Chongfeng, ZHANG Dinghua. The effect of surface integrity on fatigue life of 7055 aluminum alloy during high-speed machining[J]. Mechanical Science and Technology, 2015, 34 (06): 872-876. [14]WU D X, YAO C F, ZHANG D H. Surface characterization and fatigue evolution in GH4169 superalloy: comparing results after finish turning; shot peening and surface polishing treatment[J]. International Journal of Fatigue, 2018, 113:222-235. [15]廖智奇,吴运新,袁海洋.表面粗糙度对三维应力集中系数及疲劳寿命的影响[J].中国机械工程,2015,26(02):147-151. LIAO Zhiqi, WU Yunxin, YUAN Haiyang. The influence of surface roughness on three-dimensional stress concentration coefficient and fatigue life [J]. China Mechanical Engineering, 2015,26 (02): 147-151. [16]李久楷, 刘永杰, 王清远, 等. TC17钛合金高温超高周疲劳试验[J]. 航空动力学报, 2014, 29(07):1567-1573. LI Jiukai, LIU Yongjie, WANG Qingyuan, et al. High temperature and ultra-high cycle fatigue test of TC17 titanium alloy[J]. Journal of Aerodynamics, 2014, 29 (07): 1567-1573. [17]刘杰. 疲劳裂纹扩展的控制因素和裂纹扩展率的研究[D].西安:西北工业大学, 1991. LIU Jie. A study on the control factors and crack propagation rate of fatigue crack propagation[D]. Xi'an: Northwest University of Technology, 1991. [18]张福禄, 王润智, 董策, 等. 内部萌生疲劳裂纹扩展速率定量表征[J]. 金属热处理, 2019, 44(S1): 611-614. ZHANG Fulu, WANG Runzhi, DONG Ce, et al. Quantitative characterization of internal initiation fatigue crack propagation rate[J]. Metal Heat Treatment, 2019, 44 (S1): 611-614.

PDF(1815 KB)

397

Accesses

0

Citation

Detail

段落导航
相关文章

/