基于非线性能量阱的汽车传动系统扭振抑制研究

曲俊龙1, 苏志勇2, 史文库1, 陈志勇1

振动与冲击 ›› 2024, Vol. 43 ›› Issue (14) : 232-242.

PDF(2478 KB)
PDF(2478 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (14) : 232-242.
论文

基于非线性能量阱的汽车传动系统扭振抑制研究

  • 曲俊龙1,苏志勇2,史文库1,陈志勇1
作者信息 +

Torsional vibration suppression of an automotive powertrain system using the technique of nonlinear energy sink

  • QU Junlong1, SU Zhiyong2, SHI Wenku1, CHEN Zhiyong1
Author information +
文章历史 +

摘要

本文对非线性能量阱(nonlinear energy sink, NES)在汽车传动系统扭振抑制中的应用进行了研究。根据传动系统的结构和振动特点,建立了简化的3自由度传动系统-NES耦合动力学模型;基于增量谐波平衡法联合增量弧长法,推导并求解了耦合系统的频率响应,利用Floquet理论对周期解的稳定性进行判断;在频域和时域上对系统的非线性动力学响应及其影响因素进行了分析,并基于能量谱研究了NES的减振性能;最后,基于扩展的5自由度非线性模型对NES进行了参数优化和验证。结果表明,NES的减振性能受其自身刚度、阻尼及发动机激励幅值影响,合理设计NES参数可以高效抑制汽车传动系统的扭转共振,而不恰当的NES参数会促使系统发生高分支周期响应,导致异常振动峰值出现,经优化后的NES可以仅5%的惯量比使传动系统转速波动均方根值降低41.3%,减振效果显著。本文可为NES在传动系统扭振抑制中的应用及其参数设计提供参考。

Abstract

The application of nonlinear energy sink (NES) in suppressing the torsional vibration of the automotive powertrain system is studied. A simplified 3DOF powertrain-NES model is established according to the structural and vibrational characteristics of the powertrain. Based on the incremental harmonic balance method combined with incremental arc-length method, the frequency response of the coupling system is derived, and the stability of the periodic solution is estimated by the Floquet theory. The nonlinear dynamic response of the system is analyzed in both time and frequency domains, and parametric analyses are also carried out. The vibration suppression ability of NES is investigated based on energy spectrums, and the NES parameters are finally optimized and validated based on the 5DOF nonlinear model. The results indicate that the damping effect of NES is influenced by its stiffness, damping and engine exciting torque. Properly designed NES can effectively attenuate the powertrain torsional vibration, but inappropriate parameters of NES can lead to the high-amplitude periodic response and yield abnormal vibration peaks. The optimized NES can attenuate 41.3% RMS value of powertrain speed fluctuation by 41.3% with only 5% inertia ratio. This study can provide references for the application and parameter design of NES in the torsional vibration suppression of powertrain system.

关键词

车辆工程 / 汽车传动系统 / 非线性能量阱 / 扭转振动 / 增量谐波平衡法 / 振动抑制

Key words

vehicle engineering / automotive powertrain / nonlinear energy sink / torsional vibration / incremental harmonic balance method / vibration suppression.

引用本文

导出引用
曲俊龙1, 苏志勇2, 史文库1, 陈志勇1. 基于非线性能量阱的汽车传动系统扭振抑制研究[J]. 振动与冲击, 2024, 43(14): 232-242
QU Junlong1, SU Zhiyong2, SHI Wenku1, CHEN Zhiyong1. Torsional vibration suppression of an automotive powertrain system using the technique of nonlinear energy sink[J]. Journal of Vibration and Shock, 2024, 43(14): 232-242

参考文献

[1] 郝耀东, 何智成, 李光耀, 等. 考虑公差的扭转动力吸振器不确定性优化设计[J]. 中国机械工程, 2018, 29(14): 1645-1652. Hao Yao-dong, He Zhi-cheng, Li Guang-yao, et al. Uncertain optimization of torsional vibration damper considering tolerant design[J]. China Mechanical Engineering, 2018, 29(14): 1645-1652. [2] 高普, 项昌乐, 刘辉, 等. 被动吸振器组在传动系统宽频减振中的应用研究[J]. 汽车工程, 2019, 41(2): 191-197. Gao Pu, Xiang Chang-le, Liu Hui, et al. A study on the application of passive vibration absorber group on powertrain system wideband vibration reduction[J]. Automotive Engineering, 2019, 41(2): 191-197. [3] Starosvetsky Y, Gendelman OV. Attractors of harmonically forced linear oscillator with attached nonlinear energy sink. II: Optimization of a nonlinear vibration absorber[J]. Nonlinear Dynamics, 2008, 51(1-2): 47-57. [4] Vakakis A F. Inducing passive nonlinear energy sinks in vibrating systems[J]. Journal of Vibration and Acoustics, 2001, 123(3): 324-332. [5] 鲁正, 王自欣, 吕西林. 非线性能量阱技术研究综述[J]. 振动与冲击, 2020, 39(4): 1-16, 26. Lu Zheng, Wang Zi-xin, Lv Xi-lin. A review on nonlinear energy sink technology[J]. Journal of Vibration and Shock, 2020, 39(4): 1-16, 26. [6] Gendelman O, Manevitch LI, Vakakis AF. Energy pumping in nonlinear mechanical oscillators: part i—dynamics of the underlying Hamiltonian systems[J]. 2001, 68(1): 34-41. [7] Lamarque C H, Savadkoohi A T. Localization of vibratory energy of main linear/nonlinear structural systems by nonlinear energy sink[J]. Structural Nonlinear Dynamics and Diagnosis, 2015, 168: 201-233. [8] 姚红良, 曹焱博, 张钦, 等. 非线性能量阱在转子系统振动抑制中的应用[J]. 机械工程学报, 2020, 56(15): 191-197. Yao Hong-liang, Cao Yan-bo, Zhang Qin, et al. Application of Nonlinear Energy Sink for Rotor System Vibration Suppression[J]. Journal of Mechanical Engineering, 2020, 56(15): 191-197. [9] 楼京俊, 李爽, 柴凯, 等. 非线性能量阱振动抑制效果理论分析与试验研究[J]. 工程力学, 2022, 39(6): 202-211. Lou Jing-jun, Li Shuang, Chai Kai, et al. Theoretical and test research on the vibration suppression effect of nonlinear energy sink[J]. Engineering Mechanics, 2022, 39(6): 202-211. [10] Starosvetsky Y, Gendelman O V. Dynamics of a strongly nonlinear vibration absorber coupled to a harmonically excited two-degree-of-freedom system[J]. Journal of Sound and Vibration, 2008, 312(1-2): 234-256. [11] Starosvetsky Y, Gendelman O V. Vibration absorption in systems with a nonlinear energy sink: Nonlinear damping[J]. Journal of Sound and Vibration, 2009, 324(3-5): 916-939. [12] Starosvetsky Y, Gendelman O V. Response regimes of linear oscillator coupled to nonlinear energy sink with harmonic forcing and frequency detuning[J]. Journal of Sound and Vibration, 2008, 315(3): 746-765. [13] ZHANG Y F, KONG X R, YUE C F, et al. Dynamic analysis of 1-dof and 2-dof nonlinear energy sink with geometrically nonlinear damping and combined stiffness[J]. Nonlinear Dynamics, 2021, 105(1):167-190. [14] 张运法, 孔宪仁. 具有组合非线性阻尼的非线性能量阱振动抑制响应分析[J]. 力学学报, 2023, 55(4): 972-981. Zhang Yun-fa, Kong Xian-ren. Analysis on vibration suppression response of nonlinear energy sink with combined nonlinear damping[J]. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(4): 972-981. [15] 张也驰. 非线性能量阱的力学特性与振动抑制效果研究[D]. 哈尔滨, 哈尔滨工业大学, 2012. Zhang Ye-chi. Research on the dynamics and performance of vibration suppression of nonlinear energy sink[D]. Harbin, Harbin Institute of Technology, 2012. [16] 刘良坤, 潘兆东, 谭平, 等. 非线性能量阱系统受基底简谐激励的参数优化分析[J]. 振动与冲击, 2019, 38(22): 36-43. Liu Liang-kun, Pan Zhao-dong, Tan Ping, et al. Parameter optimization analysis of a nonlinear energy sink system under base harmonic excitation[J]. Journal of Vibration and Shock, 2019, 38(22): 36-43. [17] 崔泰毓, 张雷, 贾学志, 等. 冲击载荷下分段线性刚度能量阱的优化研究[J]. 振动与冲击, 2021, 40(10): 253-260. Cui Tai-yu, Zhang Lei, Jia Xue-zhi, et al. Mechanical properties of piecewise linear stiffness energy sinks under impact load and its optimization[J]. Journal of Vibration and Shock, 2021, 40(10): 253-260. [18] Dolatabadi N, Theodossiades S, Rothberg S J. Design optimization study of a nonlinear energy absorber for internal combustion engine pistons[J]. Journal of Computational and Nonlinear Dynamics, 2018, 13(9): 090910. [19] ZENG Y C, DING H, DU R H, et al. A suspension system with quasi-zero stiffness characteristics and inerter nonlinear energy sink[J]. Journal of Vibration and Control, 2022, 28(1-2): 143-458. [20] 甄冬, 李堃, 刘晓昂, 等. 非线性能量阱对汽车车身垂向振动的抑制效果[J]. 中国机械工程, 2022, 33(1): 24-33. Zhen Dong, Li Kun, Liu Xiao-ang, et al. Suppression effectiveness of NES for vehicle body vertical vibrations[J]. China Mechanical Engineering, 2022, 33(1): 24-33. [21] Haris A, Motato E, Theodossiades S, et al. A study on torsional vibration attenuation in automotive drivetrains using absorbers with smooth and non-smooth nonlinearities[J]. Applied Mathematical Modelling, 2017, 46:674-690. [22] Haris A, Motato E, Mohammadpour M, et al. On the effect of multiple parallel nonlinear absorbers in palliation of torsional response of automotive drivetrain[J]. International Journal of Non-Linear Mechanics, 2017, 96: 22-35. [23] Cheung Y K, Chen S H, Lau S L. Application of the incremental harmonic balance method to cubic non-linearity systems[J]. Journal of Sound and Vibration, 1990, 140(2): 273-286. [24] 曲俊龙,史文库,陈志勇. 汽车传动系扭振激励辨识与减振措施[J]. 汽车工程, 2022, 44(02):264-271. Qu Jun-long, Shi Wen-ku, Chen Zhi-yong. Excitation Identification and Attenuation Measures of Torsional Vibration in Automotive Driveline System[J]. Automotive Engineering, 2022, 44(02):264-271.

PDF(2478 KB)

374

Accesses

0

Citation

Detail

段落导航
相关文章

/