为了实现结构紧凑,低电压驱动,大推力输出以及高精密定位等性能目标,本研究提出了一种贴片式复合模态型直线超声电机。该电机的定子结构采用贴片式压电陶瓷作为激励单元,通过同时激发定子的B12和B2两种弯曲振动模态,实现了两个驱动足处的交替椭圆轨迹运动,借此利用摩擦力驱动动子进行直线运动。首先,应用有限元仿真软件COMSOL对定子的模态和频率响应进行了仿真分析。仿真结果表明,定子上两驱动足处能够实现预期的椭圆运动轨迹。随后,加工了电机的定子并进行了导纳测试,验证了有限元仿真的正确性。最后,制作了超声电机的原理样机,并通过一系列实验评估了其输出性能。实验结果表明:在100 Vpp电压和66.58 kHz频率条件下,电机的最大空载速度和最大推力分别达到了82.9 mm/s和0.52 N;在1.2 N的预压力的作用下,电机的启动电压死区为12 Vpp;在周期为20的正弦波电压信号下,电机实现了2.1 μm的步进位移。本研究为贴片式复合模态型直线超声电机的设计和应用提供了重要的理论与实验依据。
Abstract
To achieve the performance of compact structure, low-voltage operation, and large thrust, a bonded-type hybrid modes linear ultrasonic motor is developed. The stator of the motor adopts bonded type piezoelectric ceramics as excitation units. The alternating elliptical motions at two driving feet are achieved by exciting the two bending vibration modes of the stator, B12 and B2, thereby driving the slider in a linear motion by friction. First, the modal analysis and frequency response analysis of the stator were carried out using the finite element simulation software COMSOL. The simulation results show that the elliptical motion trajectories can be realized at two driving feet on the stator. Then, the stator was manufactured, and its admittance characteristics were tested to verify the correctness of the finite element simulation. Finally, a prototype of the ultrasonic motor was fabricated, and a series of experiments were carried out to evaluate its output characteristics. The experimental results show that under a voltage of 100 Vpp and a frequency of 66.58 kHz, the maximum no-load speed and maximum thrust of the prototype reach 82.9 mm/s and 0.52 N, respectively. At a preload of 1.2 N, the dead zone of the prototype is 12 Vpp. Under a sine driving wave with a cycle of 20, the motor achieves a step displacement of 2.1 μm. This study provides important theoretical and experimental basis for the design and application of bonded-type hybrid modes linear ultrasonic motors.
关键词
超声电机 /
压电陶瓷 /
有限元仿真 /
死区
{{custom_keyword}} /
Key words
ultrasonic motor /
piezoelectric ceramics /
finite element analysis /
dead zone
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 赵淳生.超声电机技术与应用[M]. 北京:科学出版社,2007: 313-314.
[2] DONG Z P, YANG M, CHEN Z Q, et al. Design and performance analysis of a rotary traveling wave ultrasonic motor with double vibrators[J]. Ultrasonics, 2016, 71: 134-141.
[3] CHEN W S, LIU Y X, YANG X H, et al. Ring-type traveling wave ultrasonic motor using a radial bending mode[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2014, 61(1): 197-202.
[4] JIAN Y, YAO Z Y, and SILBERSCHMIDT V V. Linear ultrasonic motor for absolute gravimeter[J]. Ultrasonics, 2017, 77: 88-94.
[5] LI X N, YAO Z Y, and YANG M J. A novel large thrust-weight ratio V-shaped linear ultrasonic motor with a flexible joint[J]. Review of Scientific Instruments, 2017, 88(6): 065003.
[6] SHI Y L, LI Y B, ZHAO C S, et al. A new type butterfly-shaped transducer linear ultrasonic motor[J]. Journal of Intelligent Material Systems and Structure, 2011, 22(6): 67–75.
[7] XING X D, GAO X Y, WU J G, et al. A ring-shaped linear piezoelectric ultrasonic motor operating in E01 mode[J]. Applied Physics Letters, 2020, 116:152902.
[8] 时运来,林瑜阳,张军.压电作动磁共振兼容手术机器人的研究进展[J]. 压电与声光,2019, 41(1): 106-114.
SHI Yunlai, LIN Yuyang, ZHANG Jun. Recent development on magnetic resonance compatible surgical robots driven by piezoelectric actuator[J]. Piezoelectrics and Acoustooptics, 2019, 41(1): 106-114.
[9] LIANG W Y, MA J, NG C, et al. Optimal and intelligent motion control scheme for an Ultrasonic-Motor-Driven X-Y stage[J]. Mechatronics, 2019, 59:127-139.
[10] JŪRĖNAS V, KAZOKAITIS G, MAŽEIKA D.Design of unimorph type 3DOF ultrasonic motor[J]. Applied Sciences, 2020, 10(16): 5605.
[11] WANG L, SHU C Y, JIN J M, et al.A novel traveling wave piezoelectric actuated tracked mobile robot utilizing friction effect[J]. Smart Materials and Structures, 2017, 26(3): 035003.
[12] TIAN X Q, LIU Y X, DENG J, et al. A review on piezoelectric ultrasonic motors for the past decade:Classification, operating principle, performance, and future work perspectives[J]. Sensors and Actuators A: Physical, 2020, 306: 111971.
[13] SASHIDA T, KENJO T. An introduction to ultrasonic motors[M]. Oxford: Clarendon Press, 1993: 1-4.
[14] KURIBAYASHI M, UEHA S, and MORI E. Excitation conditions of flexural traveling waves for a reversible ultrasonic linear motor[J]. The Journal of the Acoustical Society of America, 1985, 77(4): 1431-1435.
[15] KUROSWA M, UEHA S. High speed ultrasonic linear motor with high transmission efficiency[J]. Ultrasonic, 1989, 27: 39-44.
[16] MURAI K, KONG D Q, TAMURA H, et al. Hollow cylindrical linear stator vibrator using a traveling wave of longitudinal axisymmetric vibration mode[J]. Ultrasonics, 2023, 129: 106910.
[17] 杨模尖,姚志远,李响,等. V型贴片式直线超声电机的结构优化设计[J]. 振动与冲击, 2017, 36(7): 214-218.
YANG Mojian, YAO Zhiyuan, LI Xiang, et al. Structural optimization design of V-shape patch type linear ultrasonic motors[J]. Journal of Vibration and Shock, 2017, 36(7): 214-218.
[18] 张阳阳,姚志远,张亚飞. 利用弯曲模态的惯性直线超声电机结构设计[J].振动与冲击, 2017, 36(13): 125-129.
ZHANG Yangyang, YAO Zhiyuan, ZHANG Yafei. Structural design for inertial linear ultrasonic motors using bending mode[J]. Journal of Vibration and Shock, 2017, 36(13): 125-129.
[19] LI X, YAO Z Y and WU R C. Modeling and analysis of stick-slip motion in a linear piezoelectric ultrasonic motor considering ultrasonic oscillation effect [J]. International Journal of Mechanical Sciences, 2016, 107: 215-224.
[20] 张百亮,姚志远,简月,等. 基于弯曲模态的板形直线超声电机结构设计[J].振动与冲击,2019, 38(1): 111-117.
ZHANG Bailiang, YAO Zhiyuan, JIAN Yue, et al. Structural design of a novel plate-shaped linear ultrasonic motor based on bending mode[J]. Journal of Vibration and Shock, 2019, 38(1): 111-117.
[21] MASUDA N, IZUHARA S, and MASHIMO T. Miniature camera module with a hollow linear ultrasonic motor-based focus feature[J]. Sensors and Actuators A: Physical, 2023, 354: 114248.
[22] 杨芷威,何勍. 一种纵弯复合模态直线超声电机的研究[J]. 微电机,2023, 56(2): 31-35.
YANG Zhiwei, HE Qing. Research on a longitudinal and bending composite mode linear ultrasonic motor[J]. Micromotors, 2023, 56(2): 31-35.
[23] LI H, DENG J, ZHANG S, et al. Design and experiment of a three-feet linear ultrasonic motor using third bending hybrid modes[J]. Sensors and Actuators A: Physical, 2021, 331: 112990.
[24] WEI W, WU J, DING Z C, et al. A linear ultrasonic motor driven by torsional/bending vibrations[J]. Sensors and Actuators A: Physical, 2023, 357: 114404.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}