津潍黄河桥静态线形平顺性及车-线-桥耦合动力学特性研究

袁伟1, 2, 龙许友2, 谢剑1, 3, 周丽4

振动与冲击 ›› 2024, Vol. 43 ›› Issue (14) : 259-266.

PDF(1852 KB)
PDF(1852 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (14) : 259-266.
论文

津潍黄河桥静态线形平顺性及车-线-桥耦合动力学特性研究

  • 袁伟1,2,龙许友2,谢剑1,3,周丽4
作者信息 +

Static alignment comfort and train-track-bridge coupling dynamic characteristics of the yellow river bridge on Tianjin—Weifang railway

  • YUAN Wei1,2, LONG Xuyou2, XIE Jian1,3, ZHOU Li4
Author information +
文章历史 +

摘要

为确保新建高速铁路大跨度桥梁建成投入运营后的安全性和舒适性,有必要提前开展大跨桥静动力学仿真研究。本文以主跨600m的津潍铁路东营黄河公铁大桥为研究对象,基于车-线-桥动力相互作用原理构建了车-线-桥耦合系统动力学模型,分析了温度荷载、公铁路车辆荷载、混凝土收缩徐变作用下的大跨桥线形变化特点,从桥梁轨面线形曲率半径和车-线-桥系统动力响应两方面综合评估了大跨桥线路平顺性。研究结果表明:公铁路车辆荷载作用下桥面变形量最大达到596mm,计算挠跨比为1/1006,满足规范中1/500设计挠跨比的要求;拉索降温15℃工况下桥梁轨面线形最小曲率半径为23784m,满足规范中350km/h车速下23630m的理论最小竖曲线半径限值要求;单线或双线列车行驶通过对桥梁竖向动力性能的影响差异显著,对列车运行安全性影响差异较小,但会对行车舒适性有一定影响差异;随着列车运行速度从200km/h提高至350km/h,车-线-桥系统动力响应会显著增大,桥梁竖向位移、桥梁竖向加速度、轮轨垂向力、脱轨系数、轮重减载率、车体垂向加速度、垂向ISO2631指标、UIC513指标的增量尤为显著,但各指标均满足规范要求;温度荷载引起的附加变形会显著提高轮轨垂向力和轮重减载率指标,使列车运行安全性及舒适性有所降低,并会使桥梁动力响应有所提高,但各指标仍满足规范要求。

Abstract

When the newly built high-speed railway long-span bridge is put into operation, the safety and comfort should be ensured. Therefore, the static and dynamic simulation analysis of the long-span bridge should be carried out in advance. Taking Dongying Yellow River Bridge on Tianjin-Weifang Railway as the analysis object, which is a highway and railway bridge with a main span of 600m. A dynamic model of train-track-bridge coupling system was established, based on the principle of train-track-bridge dynamic interaction. The alignment changes of long-span bridges under temperature load, road and railway vehicle load, concrete shrinkage and creep were analyzed. The ride comfort of long span bridge was evaluated comprehensively, based on the curvature radius of bridge rail alignment and the dynamic response of train-track-bridge system. The results show that the maximum deformation of bridge deck under road and railway vehicle load is 596mm. The calculated deflection to span ratio under this calculation condition is 1/1006, which meets the limit requirement of 1/500 design deflection to span ratio in the code. The minimum curvature radius of the bridge rail alignment is 23784m when the cable is cooled at 15℃, which meets the design limit requirement of the theoretical minimum vertical curve radius of 23630m at a vehicle speed of 350km/h in the code. The dynamic performance of the bridge, the safety and comfort of the train meet the specification requirements, when the single-line or double-line CRH3 Multiple unit trains pass the bridge at a speed of 200km/h~350km/h. The additional deformation caused by temperature load can significantly improve the vertical wheel/rail force and wheel load reduction rate. Therefore, the safety and comfort of the train will be reduced. Additional deformation will improve the dynamic response of the bridge, when the train passes the bridge. But the dynamic response still meet the specification requirements.

关键词

高速铁路 / 大跨度桥梁 / 车-线-桥耦合动力学 / 线形平顺性 / 行车安全舒适性 / 附加变形

Key words

high-speed railway / long-span bridge / train-track-bridge coupling dynamic analysis / alignment comfort / the safety and comfort of the train / additional deformation

引用本文

导出引用
袁伟1, 2, 龙许友2, 谢剑1, 3, 周丽4. 津潍黄河桥静态线形平顺性及车-线-桥耦合动力学特性研究[J]. 振动与冲击, 2024, 43(14): 259-266
YUAN Wei1, 2, LONG Xuyou2, XIE Jian1, 3, ZHOU Li4. Static alignment comfort and train-track-bridge coupling dynamic characteristics of the yellow river bridge on Tianjin—Weifang railway[J]. Journal of Vibration and Shock, 2024, 43(14): 259-266

参考文献

[1] Qin S, Gao Z. Developments and prospects of long-span high-speed railway bridge technologies in China [J]. Engineering, 2017, 3(6): 8. [2] 魏周春. 高速铁路大跨度桥梁变形对线路平顺度的影响分析[J]. 铁道建筑, 2022, 62(7): 81-85. WEI Zhou-chun. Analysis on influence of long-span high speed railway bridge deformation on line smoothness [J]. Railway Engineering, 2022, 62(7): 81-85. [3] 刘超, 魏周春, 张岷, 等. 高速铁路300m以上跨度桥梁线形评价标准研究[J]. 铁道标准设计, 2021, 65(9): 62-67. LIU Chao, WEI Zhou-chun, ZHANG Min, et al. Research on the evaluation standard of the profile of high speed railway bridges of over 300m span [J]. Railway Standard Design, 2021, 65(9): 62-67. [4] Zhai W, Han Z, Chen Z, et al. Train-track-bridge dynamic interaction: a state-of-the-art review [J]. Vehicle System Dynamics, 2019, 57(7): 44. [5] 罗静峰. 大跨度多线铁路斜拉桥行车安全性分析[J]. 铁道工程学报, 2018, 35(5): 58-62. LUO Jing-feng. Analysis of the train running safety of multi-line railway cable-stayed bridge [J]. Journal of Railway Engineering Society, 2018, 35(5): 58-62. [6] 谭社会, 李再帏, 时瑾, 等. 线路纵断面设置对千米级高铁悬索桥动力学行为的影响[J]. 中国铁道科学, 2021, 42(6): 58-67. TAN She-hui, LI Zai-wei, SHI Jin, et al. Influence of track profile setting on dynamic behavior of high-speed railway suspension bridge with kilometer span [J]. China Railway Science, 2021, 42(6): 58-67. [7] 张丛, 孙洪斌, 姜金凤, 等. 潍莱铁路钢桁桥车桥耦合振动分析及行车安全性评估[J]. 铁道科学与工程学报, 2023: 1-8. ZHANG Cong, SUN Hong-bin, JIANG Jin-feng, et al. Analysis of coupled vibration of steel truss bridge on wei-lai railway and evaluation of driving safety [J]. Journal of Railway Science and Engineering, 2023: 1-8. [8] 李小珍, 秦羽, 刘德军. 侧风作用下五峰山长江大桥列车行车安全控制[J]. 铁道工程学报, 2018, 35(7): 58-64. LI Xiao-zhen, QIN Yu, LIU De-jun. The safety control of train running on the Wufeng Mountain Yangtze River Bridge under crosswind [J]. Journal of Railway Engineering Society, 2018, 35(7): 58-64. [9] 张骞, 高芒芒, 于梦阁, 等. 沪通长江大桥主桥风-车-桥动力响应研究[J]. 中国铁道科学, 2018, 39(1): 31-38. ZHANG Qian, GAO Mang-mang, YU Meng-ge, et al. Research on wind-train-bridge dynamic response of main bridge of Shanghai-Nantong Yangtze River Bridge [J]. China Railway Science, 2018, 39(1): 31-38. [10] 杨静静, 高芒芒, 赵文博, 等. 大跨度铁路桥梁变形控制标准研究[J]. 铁道学报, 2023, 45(3): 137-143. YANG Jing-jing, GAO Mang-mang, ZHAO Wen-bo, et al. Research on deformation control standard of long-span railway bridge [J]. Journal of the China Railway Society, 2023, 45(3): 137-143. [11] 李鹏鑫, 邢书科, 王兆刚, 等. 温度-轨道不平顺组合激励下车-轨-桥耦合动力响应分析[J]. 铁道标准设计, 2022: 1-8. LI Pen-xin, XING Shu-ke, WANG Zhao-gang, et al. Analysis of coupled dynamic response of vehicle rail bridge under temperature track irregularity combined excitation [J]. Railway Standard Design, 2022: 1-8. [12] 李小珍, 肖军, 刘德军, 等. 附加变形对沪通长江大桥行车性能影响[J]. 铁道工程学报, 2016, 33(11): 63-68. LI Xiao-zhen, XIAO Jun, LIU De-jun, et al. Performance influence of train driving on Shanghai-Nantong Yangtze River Bridge considering additional deformation [J]. Journal of Railway Engineering Society, 2016, 33(11): 63-68. [13] 尹邦武, 杨峰, 郭向荣, 等. 温度变形对大跨度钢箱系杆拱桥车桥动力响应的影响[J]. 铁道科学与工程学报, 2013, 10(6): 21-27. YIN Bang-wu, YANG Feng, GUO Xiang-rong, et al. Influence of temperature deformation on vehicle-bridge dynamic response of long-span steel box-girder tied-arch bridge [J]. Journal of Railway Science and Engineering, 2013, 10(6): 21-27. [14] Gao Y, Shi J, Lu C. A Two-Step Composite Time Integration Scheme for Vehicle-Track Interaction Analysis considering Contact Separation [J]. Shock and Vibration, 2019: 13. [15] 徐曼. 风与列车荷载作用下大跨度公铁两用斜拉桥静动力影响分析[D]. 北京: 北京交通大学, 2019. XU Man. Analysis of static and dynamic effects of long span cable-stayed bridges for highway and railway under wind and train load [D]. Beijing: Beijing Jiaotong University, 2019.

PDF(1852 KB)

207

Accesses

0

Citation

Detail

段落导航
相关文章

/