牵引异步电机气动和电磁混合噪声预测研究

孙艳红1,张伟2,王文庆2,朱一乔2,邱毅1,郑旭1

振动与冲击 ›› 2024, Vol. 43 ›› Issue (14) : 284-292.

PDF(2741 KB)
PDF(2741 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (14) : 284-292.
论文

牵引异步电机气动和电磁混合噪声预测研究

  • 孙艳红1,张伟2,王文庆2,朱一乔2,邱毅1,郑旭1
作者信息 +

rediction and study of the aerodynamic and electromagnetic mixed noise of the traction asynchronous motor

  • SUN Yanhong1, ZHANG Wei2, WANG Wenqing2, ZHU Yiqiao2, QIU Yi1, ZHENG Xu1
Author information +
文章历史 +

摘要

高速列车牵引异步电机在高转速下的噪声主要由气动噪声和电磁噪声组成,且前者为主导成分。本文为准确地预测该类型电机高转速下的气动和电磁混合噪声特性,首先建立了电机气动声源的仿真计算模型,包括基于计算流体动力学的流场计算和Lighthill声类比的声场计算;其次建立了电磁振动的计算模型,其中包含了Maxwell电磁场计算和基于模态叠加法的谐响应分析;最后通过有限元法和边界元法建立电机气动和电磁混合噪声的计算模型,最终得到电机混合噪声在各测点的总声压级和电机的声功率级,并与试验结果进行对比。结果表明,在4000 r/min和5600 r/min两个转速下的仿真计算的声功率级与试验值差距不超过0.6 dB(A),各测点总声压级与试验值接近,证明混合噪声的计算模型能够准确有效地预测牵引异步电机气动和电磁混合噪声。

Abstract

The noise of a traction asynchronous motor in high-speed train at high speed is mainly composed of aerodynamic noise and electromagnetic noise, and the former is the dominant. In order to accurately predict the aerodynamic and electromagnetic noise characteristics of this kind of motor at high speed, a simulation calculation model of the motor aerodynamic noise source is firstly established, including flow field calculation based on computational fluid dynamics and sound field calculation based on Lighthill analogy method. Secondly, a calculation model of electromagnetic vibration is established, which includes Maxwell electromagnetic field calculation and harmonic response analysis based on modal superposition method. Finally, the finite element method and boundary element method are used to establish the simulation calculation model of mixed noise of aerodynamic and electromagnetic noise. And the total sound pressure levels at all test points and sound power levels of motor noise are obtained and compared with those from experiments. The results show that the differences of sound power level between the simulation and experiment value are less than 0.6 dB(A) at 4000 r/min and 5600 r/min speeds, and the values of overall sound pressure levels at all test points are close to those from experiments, which proves that the calculation model of mixed noise can accurately and effectively predict the mixed noise of aerodynamic and electromagnetic noise of the traction asynchronous motor.

关键词

牵引异步电机 / 气动声源 / 电磁振动 / 混合噪声

Key words

traction asynchronous motor / aerodynamic noise source / electromagnetic vibration / mixed noise

引用本文

导出引用
孙艳红1,张伟2,王文庆2,朱一乔2,邱毅1,郑旭1. 牵引异步电机气动和电磁混合噪声预测研究[J]. 振动与冲击, 2024, 43(14): 284-292
SUN Yanhong1, ZHANG Wei2, WANG Wenqing2, ZHU Yiqiao2, QIU Yi1, ZHENG Xu1. rediction and study of the aerodynamic and electromagnetic mixed noise of the traction asynchronous motor[J]. Journal of Vibration and Shock, 2024, 43(14): 284-292

参考文献

[1] SABIN S, AYDIN U, BELAHCEN A. Acoustic noise computation of electrical motors using the boundary element method[J]. Energies, 2020, 13(1): 245. [2] TISCHMACHER H, TSOUMAS IP, EICHINGER B, et al. Case studies of acoustic noise emission from inverter-fed asynchronous machines[J]. IEEE Transactions on Industry Applications, 2011, 47: 2013-22. [3] KRISHNA S R, KRISHNA A R, RAMJI K. Reduction of motor fan noise using CFD and CAA simulations[J]. Applied Acoustics, 2011, 72(12): 982-92. [4] PREZELJ J, NOVAKOVIĆ T. Centrifugal fan with inclined blades for vacuum cleaner motor[J]. Applied Acoustics, 2018, 140: 13-23. [5] OTTERSTEN M, YAO H D, DAVIDSON L. Tonal noise of voluteless centrifugal fan generated by turbulence stemming from upstream inlet gap[J]. Physics of Fluids, 2021, 33(7): 075110. [6] PETER I, SCUTARU GHE, MAILAT A. The noise of two-speed three-phase induction motors with squirrel cage rotors[J]. Revue roumaine des sciences techniques-Série Électrotechnique et Énergétique, 2008, 53: 199-211. [7] ZUO S, LIN F, WU X. Noise analysis, calculation, and reduction of external rotor permanent magnet synchronous motor[J]. IEEE Transactions on Industrial Electronics, 2015, 62(10): 6204-12. [8] WU S, ZUO S, WU X, et al. Magnet modification to reduce pulsating torque for axial flux permanent magnet synchronous machines[J]. Applied Computational Electromagnetics Society Journal, 2016, 31(3): 294-303. [9] WU S, ZUO S, WU X. Numerical prediction and analysis of electromagnetic vibration and noise of claw pole alternator[J]. the Journal of the Acoustical Society of America, 2016, 139(4): 2104. [10] LIN F, ZUO S, DENG W, et al. Modeling and analysis of electromagnetic force, vibration, and noise in permanent magnet synchronous motor considering current harmonics[J]. IEEE Transactions on Industrial Electronics, 2016, 63(12): 7455-66. [11] 郑江, 代颖, 石坚. 车用异步电机的电磁噪声分析与抑制[J]. 电机与控制应用, 2017, 44(06): 74-78. ZHENG Jiang, DAI Ying, SHI Jian. Analysis and suppression of electromagnetic noise of asynchronous motor for electric vehicle[J]. Electric Machines & Control Application, 2017, 44(06): 74-78. [12] 胡世同, 邱子桢, 陈勇, 等. 基于多物理场耦合永磁同步电机边带电磁噪声分析[J]. 噪声与振动控制, 2021, 41(06): 154-159+267. HU Shitong, QIU Zizhen, CHEN Yong, et al. Analysis of sideband electromagnetic noise of permanent magnet synchronous motors based on multi-physics coupling[J]. Noise and Vibration Control, 2021, 41(06): 154-159+267. [13] 李争, 刘力博, 魏晓鹏, 等.偏心故障下可偏转双定子开关磁阻电机的电磁振动特性分析[J]. 噪声与振动控制, 2022, 42(06): 12-18+44. LI Zheng, LIU Libo, WEI Xiaopeng, et al. Analysis of electromagnetic vibration characteristics of a deflectable double-stator switched reluctance motor with eccentric fault[J]. Noise and Vibration Control, 2022, 42(06): 12-18+44. [14] 丁杰, 尹亮, 李叶林. 电动乘用车永磁电机的振动噪声测试及特性分析[J]. 噪声与振动控制, 2022, 42(02): 179-185. DING Jie, YIN Liang, LI Yelin. Vibration and noise test and characteristic analysis of permanent magnet motors of electric passenger cars[J]. Noise and Vibration Control, 2022, 42(02): 179-185. [15] 周云红, 王 东,黄 飞, 等. 基于定转子齿开槽的开关磁阻电机振动噪声抑制[J]. 振动与冲击, 2023, 42(9): 312-321. ZHOU Yunhong, WANG Dong, HUANG Fei, et al. Vibration and noise suppression of switched reluctance motor based on stator and rotor slotted. Journal of Vibration and Shock, 2023, 42(9): 312-321. [16] KALTENBACHER M, ESCOBAR M, BECKER S, et al. Numerical simulation of flow-induced noise using LES/SAS and Lighthill's acoustic analogy[J]. International Journal for Numerical Methods in Fluids, 2010, 63: 1103-22. [17] 司乔瑞, 盛国臣, 衡亚光, 等. 基于Lighthill声类比理论的离心泵流动诱导噪声的数值模拟[J]. 振动与冲击, 2018, 37(23): 84-90+97. SI Qiaorui, SHENG Guochen, HENG Yaguang, et al. Numerical simulation for flow-induced noise in a centrifugal pump based on Lighthill acoustic analogy theory[J]. Journal of Vibration and Shock, 2018, 37(23): 84-90+97. [18] 张德胜, 张乃舒, 许彬, 等. 基于Lighthill声类比理论的喷水推进泵不稳定流动诱导噪声的数值研究[J]. 振动与冲击, 2021, 40(10): 278-287. ZHANG Desheng, ZHANG Naishu, XU Bin, et al. Numerical simulation of the flow-induced noise in a water-jet pump based on the Lighthill acoustic analogy theory[J]. Journal of Vibration and Shock, 2021, 40(10): 278-287. [19] ANSYS Inc., Ansys Fluent 19.1 Theory Guide[M]. Canonsburg: Ansys Inc., 2018. [20] SILVA P, TSOUTSANIS P, ANTONIADIS A F. Simple multiple reference frame for high-order solution of hovering rotors with and without ground effect[J]. Aerospace Science and Technology, 2021, 111: 106518. [21] SANDBOGE R, CARO S, PLOUMHANS P, et al. Validation of a CAA formulation based on Lighthill's analogy using AcuSolve and ACTRAN/LA on an idealized automotive HVAC blower and on an axial fan[C]. 12th AIAA/CEAS Aeroacoustics Conference, Cambridge MA, USA, 2006: 1-18. [22] 陶征, 刘旭, 胡斌. 响应面法的杆式超声电机有限元模型修正[J]. 声学学报, 2017, 42(3): 305-310. TAO Zheng, LIU Xu, HU Bin. Finite element model updating of a rod-type ultrasonic motor based on response surface method[J]. Acta Acustica, 2017, 42(3): 305-310. [23] YANG Y, PRÖBSTING S, LIU Y, et al. Effect of dual vortex shedding on airfoil tonal noise generation[J]. Physics of Fluids, 2021, 33: 075102.

PDF(2741 KB)

Accesses

Citation

Detail

段落导航
相关文章

/