轮轨摩擦自激振动导致曲线啸叫研究

冯晓航,陈光雄,董丙杰,宋启峰,唐宇

振动与冲击 ›› 2024, Vol. 43 ›› Issue (14) : 73-79.

PDF(1616 KB)
PDF(1616 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (14) : 73-79.
论文

轮轨摩擦自激振动导致曲线啸叫研究

  • 冯晓航,陈光雄,董丙杰,宋启峰,唐宇
作者信息 +

Curve squeal caused by the wheel-rail friction induced self-excited vibration

  • FENG Xiaohang,CHEN Guangxiong,DONG Bingjie,SONG Qifeng,TANG Yu
Author information +
文章历史 +

摘要

在地铁车辆通过狭窄的曲线轨道时,往往伴随着啸叫噪声的产生。为深入研究这一现象,本文考虑了列车在曲线轨道行驶时的轮轨接触状态,进而建立了轮对–轨道系统的摩擦耦合有限元模型。随后,通过复特征值分析对该模型进行深入研究,并探讨了不同摩擦系数以及钢轨吸振器的类型及其参数对曲线啸叫产生趋势的影响。研究结果表明,轮对–轨道系统由于摩擦自激振动而引起的曲线啸叫噪声频率为482.4 Hz、1205.1 Hz和2153.9 Hz,这与现场测试结果相一致。此外,当摩擦系数大于或等于0.25时,轮对–轨道系统才会出现2153.9 Hz的曲线啸叫噪声频率;而安装钢轨侧面吸振器及增大其连接阻尼或者选择合适的轨底吸振器结构均能有效地缓解轮对–轨道系统的摩擦自激振动。

Abstract

When subway vehicles traverse sharp curved tracks, they consistently generate squealing noise. To investigate this phenomenon, this study considered the wheel-rail contact conditions when the train passed through curved tracks, and then established a friction-coupling finite element model of a wheelset–track system. Complex eigenvalue analysis was also performed on this model to investigate the effects of different friction coefficients, rail vibration absorber types and parameters on the trend of curve squealing noise generation. The analysis results indicated that the frequencies of curve squeal noise generated by the wheelset–track system due to friction self-excited vibrations were 482.4 Hz, 1205.1 Hz, and 2153.9 Hz, which corroborated with the measurement results from the on-site tests. In addition, when the friction coefficient was greater than or equal to 0.25, the wheelset–track system began to exhibit curve squealing noise at a frequency of 2153.9 Hz. Moreover, installing rail side vibration absorbers and increasing their connection damping or selecting a suitable rail bottom vibration absorber structure can effectively alleviate the frictional self-excited vibration of the wheelset–track system.

关键词

曲线啸叫 / 轮轨接触 / 摩擦自激振动 / 复特征值分析 / 数值仿真

Key words

curve squeal / wheel–rail contact / friction self-excited vibration / complex eigenvalue analysis / numerical simulation;

引用本文

导出引用
冯晓航,陈光雄,董丙杰,宋启峰,唐宇. 轮轨摩擦自激振动导致曲线啸叫研究[J]. 振动与冲击, 2024, 43(14): 73-79
FENG Xiaohang,CHEN Guangxiong,DONG Bingjie,SONG Qifeng,TANG Yu. Curve squeal caused by the wheel-rail friction induced self-excited vibration[J]. Journal of Vibration and Shock, 2024, 43(14): 73-79

参考文献

[1] MÜLLER B, OERTLI J. Combating curve squeal: Monitoring existing applications [J]. Journal of Sound and Vibration,2006,293(3-5):728-734. [2] VINCENT N, KOCH J R, CHOLLET H, et al. Curve squeal of urban rolling stock—part 1: state of the art and field measurements [J]. Journal of Sound and Vibration, 2006,293(3-5):691-700. [3] RUDD M J. Wheel/rail noise—part II: Wheel squeal [J]. Journal of Sound and Vibration,1976,46(3):381-394. [4] SCHNEIDER E, POPP K, IRRETIER H. Noise generation in railway wheels due to rail-wheel contact forces [J]. Journal of Sound and Vibration,1988,120(2):227-244. [5] KRAFT K. Der einfluß der fahrgeschwindigkeit auf den haftwert zwischen rad und schiene [J]. Archiv für Eisenbahntechnik,1967,22:58-78. [6] FINGBERG U. A model of wheel-rail squealing noise [J]. Journal of Sound and Vibration,1990,143(3):365-377. [7] HECKL M A, ABRAHAMS I D. Curve squeal of train wheels, part 1: Mathematical model for its generation [J]. Journal of Sound and Vibration,2000,229(3):669-693. [8] HECKL M A. Curve squeal of train wheels, part 2: Which wheel modes are prone to squeal[J]. Journal of Sound and Vibration,2000,229(3):695-707. [9] LIU X, MEEHAN P A. Wheel squeal noise: A simplified model to simulate the effect of rolling speed and angle of attack [J]. Journal of Sound and Vibration,2015,338:184-198. [10] MEEHAN P A, LIU X. Modelling and mitigation of wheel squeal noise amplitude [J]. Journal of Sound and Vibration, 2017,413:144-158. [11] HOFFMANN N, FISCHER M, R. ALLGAIER, et al. A minimal model for studying properties of the mode-coupling type instability in friction induced oscillations [J]. Mechanics Research Communications,2002,29(4):197-205. [12] PIERINGER A. A numerical investigation of curve squeal in the case of constant wheel/rail friction [J]. Journal of Sound and Vibration,2014,333:4295-4313. [13] LAI, V V, ANCIANT M, CHIELLO O, et al. A nonlinear FE model for wheel/rail curve squeal in the time-domain including acoustic predictions [J]. Applied Acoustics, 2021,179:108031. [14] THOMPSON D J, SQUICCIARINI G, DING B, et al. A state-of-the-art review of curve squeal noise: phenomena, mechanisms, modelling and mitigation [J]. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 2018,139. [15] 刘晓刚, 伍骏波. 基于模态耦合与负阻尼理论的啸叫噪声的研究 [J]. 机械工程学报,2022,58(10):254-264. LIU Xiaogang, WU Junbo. Investigation of squeal noise based on mode coupling and negative damping theory [J]. Journal of Mechanical Engineering, 2022,58(10):254-264. [16] WU B W, CHEN G X, KANG X, et al. Study on the origin of rail corrugation at a long downhill braking section based on friction-excited oscillation. Tribology Transactions, 2020,63(3):439-452. [17] 崔晓璐, 漆伟, 杜子学, 等. 山地城市地铁线路曲线段异常波磨现象的产生机理及抑制方法 [J]. 振动与冲击, 2021,40(14):228-236. CUI Xiaolu, QI Wei, DU Zixue, et al. Generation mechanism and suppression method for the abnormal phenomenon of rail corrugation in the curve interval of a mountain city metro [J]. Journal of Vibration and Shock, 2021,40(14):228-236. [18] 钱韦吉, 黄志强. 摩擦因数对摩擦自激振动影响规律的数值分析 [J]. 振动与冲击,2018,37(18):224-230. QIAN Weiji, HUANG Zhiqinag. Numerical analysis on the effects of friction coefficient on the friction-induced self-excited vibration [J]. Journal of Vibration and Shock, 2018,37(18):224-230. [19] 冯晓航, 陈光雄, 梅桂明, 等. 地铁弓网系统摩擦自激振动研究 [J/OL]. 西南交通大学学报, 2023:1-8. FENG Xiaohang, CHEN Guangxiong, MEI Guiming, et al. Study on frictional self-excited vibration of a metro pantograph-catenary system [J/OL]. Journal of Southwest Jiaotong University, 2023:1-8. [20] LI Z L, LI S G, ZHANG P, et al. Mechanism of short pitch rail corrugation: initial excitation and frequency selection for consistent initiation and growth [J]. International Journal of Rail Transportation, 2022. [21] HAN J, HE Y P, XIAO X B, et al. Effect of control measures on wheel/rail noise when the vehicle curves [J]. Applied Sciences-Basel,2017,7(11):1144. [22] QIAN W J, HUANG Z Q, OUYANG H, et al. Numerical investigation of the effects of rail vibration absorbers on wear behaviour of rail surface [J]. Proceedings of the Institution of Mechanical Engineers, Part J. Journal of engineering tribology,2019,233(3):424-438. [23] LIU H, ZHU D. Controlling the vibration and noise of a ballasted track using a dynamic vibration absorber with negative stiffness [J]. Proceedings of the Institution of Mechanical Engineers Part F Journal of Rail and Rapid Transit,2019,234(10):095440971988808. [24] 冯青松, 张瀚文, 郭文杰, 等. 振幅放大型钢轨吸振器对弹性波传播的控制研究[J].振动与冲击, 2023,42(16):1-9. FENG Qingsong, ZHANG Hanwen, GUO Wenjie, et al. A study on the control of elastic wave propagation by amplitude magnification rail vibration absorbers [J]. Journal of Vibration and Shock,2023,42(16):1-9. [25] HE Y P, ZHOU Q, XU F, et al. An investigation into the effect of rubber design parameters of a resilient wheel on wheel-rail noise [J]. Applied Acoustics,2023,205:109259.

PDF(1616 KB)

203

Accesses

0

Citation

Detail

段落导航
相关文章

/